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The present study considers steady laminar two-dimensional incompressible flow over both

in-line and staggered flat tube bundles used in heat exchanger applications. The effects of

various independent parameters, such as Reynolds number (Re), Prandtl number (Pr),

length ratio (L=Da), and height ratio (H=Da), on the pressure drop and heat transfer were

studied. A finite-volume-based FORTRAN code was developed to solve the governing equa-

tions. In all, 10 modules were considered in this study. The flow is observed to attain a

periodically fully developed condition downstream of the fourth module. The nondimensio-

nalized pressure drop decreases monotonically with an increase in the Reynolds number. In

general, the module average Nusselt number increases with an increase in the Reynolds

number. The results at Pr ¼ 7.0 indicate a significant increase in the computed module

average Nusselt number when compared to those for Pr ¼ 0.7. The overall performance

of the in-line configuration for lower height ratio (H=Da ¼ 2) and higher length ratio

(L=Da ¼ 6) is preferable since it provides higher heat transfer rate for all Reynolds num-

bers except for the lowest Re value of 25. As expected, the staggered configurations perform

better than the in-line configuration from the heat transfer point of view. Also from the heat

transfer point of view, equivalent circular tubes perform better than flat tube banks. How-

ever, the heat transfer performance ratio was always greater than 1, signifying that from the

pressure-drop point of view the flat tube banks perform better than a tube bank with equiva-

lent circular tubes.

INTRODUCTION

Some studies have shown that the tube shapes and their arrangement in heat
exchangers have positive influence on heat transfer [1–3]. Flat tube designs have
been recently introduced for use in modern heat exchanger applications such as
automotive radiators [4] Flat tubes seem to have favorable pressure drop charac-
teristics compared to circular tubes. Also due to smaller wake size compared to
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circular tubes, flat tubes have better noise and vibration characteristics. Heat
transfer and pressure drop characteristics of flat-tube heat exchangers in the open
literature are rather limited. The geometry of flat tubes makes it difficult to study
heat transfer and fluid flow using finite-difference and finite-volume techniques.
Finite-difference techniques use coordinate transformation and grid-generation
techniques to exploit their simplicity and efficiency, as mentioned by Napaolitano
and Orlandi [5]. Finite-volume techniques are increasingly used for computing
incompressible flow in arbitrary geometries because of recent developments in
grid-generation techniques.

The finite-volume method was originally developed as a special case of the
finite-difference formulation. Some of the earlier finite-volume approaches were
developed for orthogonal coordinate systems because fewer terms result from coor-
dinate transformation. Sharatchandara [6] mentioned that this approach is limited
due to the difficulty of maintaining orthogonality throughout the entire domain
and the undesirable grid clustering that results from the forced orthogonality con-
straints. The generalized nonorthogonal coordinate system approach appears to be
the most appropriate choice for the majority of the recent finite-volume approaches,
not only because of its generality, but also because it is possible to orient the
dependent variable along the grid lines conforming to the shape of the domain

NOMENCLATURE

a coefficients

b source term

Cp specific heat

e, w, n, s adjacent faces to the main

point P

E, W, N, S adjacent points to the main

point P

f friction factor

F flow rate through control

volume

h heat transfer coefficient

H height

J total flux

Ja Jacobian of transformation

k thermal conductivity

L length

LMTD log-mean temperature

difference

NP normalized pressure

Nu Nusselt number

P point, pressure, Peclet number

PDF periodically fully developed flow

Q total heat flux

Re Reynolds number

S source term, surface

t time

T temperature

u, v Cartesian velocity components,

velocity projection

V velocity vector, volume

x, y Cartesian coordinates

C diffusion coefficient

h nondimensional temperature

m dynamic viscosity

n kinematic viscosity

q mass density

n, g curvilinear coordinates

/ general dependent variable

Subscripts

av average

b bulk

in inlet

max maximum

min minimum

nb neighboring points

NO nonorthogonal

P primary flux, main point

S secondary flux

w wall

Superscripts
� guessed value
0 corrected value
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and therefore usually along principal streamlines, which minimizes the chance of
false diffusion [7].

When Cartesian velocity components are retained as dependent variables and
the coordinates are transformed, such formulation of the governing equations is con-
sidered partial transformation. This technique has been used extensively in the past,
primarily because of its simplicity. Cartesian velocity components have been widely
used as the dependent variables in nonorthogonal coordinate systems [8, 9].

A brief review of various studies involving flow over a variety of shapes with
various types of flow conditions is worth mentioning at this time. The effect of flow
past bluff bodies, especially cylinders, has been a major attraction for fluid mech-
anics investigations for a long time. Most of these studies concerned flow over a
circular cylinder. Williamson [10] and Zdrakovich [11] wrote comprehensive reviews
on this topic.

Chang [12] has developed a numerical scheme to predict the heat transfer and
pressure drop coefficient in cross flow through rigid tube bundles. The scheme uses
the Galerkin finite-element technique. The conservation equations for laminar
steady-state flow are cast in function and vorticity form. Chang’s numerical predic-
tions agree well with the experimental data up to a Reynolds number value of 1,000.

Kundu [13, 14] studied numerically the heat transfer and fluid flow over a row of
in-line cylinders placed between two parallel plates. Incompressible, two-dimensional,
and laminar flow were considered. The cylinder and plate temperatures were assumed
to be constant but not necessarily the same. The spacing between cylinders altered the
flow in the separated zone and subsequently affected the heat transfer. The heat trans-
fer data for various aspect ratios and Reynolds numbers were reduced to form a single
formula for ease of interpolation. In general, the pressure drop and heat transfer were
spatially periodic, indicating periodically fully developed characteristics.

Grannis and Sparrow [15] studied fluid flow over an array of diamond-
shaped fins using a finite-element method. Flow and conjugate heat transfer in
a high-performance finned oval tube heat exchanger element were calculated
for a thermally and hydrodynamically developing three dimensional laminar flow
by Chen [16, 17].

Breuer [18] investigated in detail the confined flow around a cylinder of square
cross section mounted inside a plane channel (blockage ratio B ¼ 1=8) by two
entirely different numerical techniques, a lattice-Boltzmann automata (LBA) method
and a finite-volume method (FVM). The finite-volume code was based on an incom-
pressible Navier–Stokes solver for arbitrary nonorthogonal, body fitted grids. Velo-
city profiles and integral parameters such as drag coefficient, recirculation length,
and Strouhal numbers were investigated.

Studies of flat-tube heat exchangers are also limited, though they are expected
to have lower air-side pressure drop and better air-side heat transfer coefficients
when compared to circular-tube heat exchangers. The pressure drop is expected to
be lower than that for circular tubes because of a smaller wake area. For the same
reason, vibration and noise are expected to be less in flat-tube heat exchangers com-
pared to circular-tube heat exchangers.

The main objective of this article is to study numerically the 2-D laminar
incompressible flow and heat transfer over a flat tube bank (Figure 1). Both in-line
and staggered configurations are considered.
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MATHEMATICAL FORMULATION

The equations governing the conservation of mass, momentum, and energy can
be cast into general form as

q q/ð Þ
qt

þr � ~JJ ¼ S ð1Þ

where

~JJ ¼ q~VV/� Cr/ ð2Þ

In these equations, / is a general dependent variable, q is the mass density, C is the
effective diffusion coefficient, V is the velocity vector, and S designates the volu-
metric source or sink. In Eq. (2), J corresponds to the total flux of / i.e., it takes into
account both convective and diffusive fluxes. Assuming constant thermophysical
properties of the fluid, expressions in Cartesian vector notation for steady-state
incompressible flow are

Continutity : r � V ¼ 0 ð3Þ

Momentum : q V � rð ÞV ¼ �rPþ mr2V ð4Þ

Energy : qCp V � rð ÞT ¼ kr2T ð5Þ

Figure 1. Flat tube banks: (a) in-line and (b) staggered configurations.
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A finite-volume technique proposed by Karki [19] has been used to discretize
the general conservation equation. Integration of flux equation leads to

ðJP;e � JS;eÞ � ðJP;w � JS;wÞ þ ðJP;n � JS;nÞ � ðJP;s � JS;sÞ ¼ S Ja ð6Þ
Jp and Js are referred to the primary flux and secondary flux, respectively. The
primary flux a has both convection and diffusion terms, while the secondary flux
is solely diffusive and arises as a result of the nonorthogonality of the coordinate sys-
tem; it would disappear in an orthogonal coordinate system, thus highlighting the
fact that the nonorthogonality is one of the many sources of false diffusion. Ja is
the Jacobian of transformation.

The secondary fluxes have to be calculated explicitly in order to avoid a nine-
point formulation. These terms turn out to be less significant if the grid is almost
orthogonal. Terms representing the secondary fluxes will be treated as source terms.
The primary flux includes the value of / and its gradient at the control-volume inter-
face. The power-law scheme is used to represent the solution for one-dimensional
convection-diffusion equation [20].

Following Patankar’s formulation, the primary flux JP;e [Eq. (6)], which com-
bines both convective and diffusive fluxes, is evaluated using a polynomial
expression in terms of the cell Peclet number as follows:

JP;e ¼ Fe/E þ AðjPejÞDeð/p � /EÞ ð7Þ

where AðjPejÞ is the polynomial expression defined by Patankar [7]. The non-
dimensional cell Peclet number P, is defined as the measure of the relative strengths
of the advection through a control surface, F, and the diffusion conductance, D.

Substituting the expression for the primary fluxes and the source term, the discre-
tization equations that constitue a set of linear algebraic equations which were solved to
get the value of / at nodal points in the computation domain can be written as

ap/p ¼ aE/E þ aw/w þ aN/N þ aS/S þ b ð8Þ

where

aE ¼ DeAðjPejÞ þmax 0;�Fe½ �½ � ð9Þ

aw ¼ DWAðjPwjÞ þmax 0;Fw½ �½ � ð10Þ
aN ¼ DnAðjPnjÞ þmax0;�Fn½ �½ � ð11Þ

as ¼ DsAðjPsjÞ þmax0;Fs½ �½ � ð12Þ

aP ¼ aE þ aW þ aN þ aS � SP Ja ð13Þ

The source b in Eq. (8) can be expressed as b ¼ bs þ bNO, where bs ¼ SC Ja and bNO is
the source term due to the nonorthogonality of the coordinate system.

If the curvilinear velocities are chosen as the dependent variables in the
momentum equations, then they will have curvature source terms, as these

HEAT TRANSFER OVER A BANK OF FLAT TUBES 363



curvilinear velocity do not have a fixed direction. Karki [19] presented a formulation
in which the curvature source terms are obtained by algebraic manipulation of the
discretization equations. This would eliminate the complications and difficulties of
programming these extra terms if the discretization equations were obtained by
the conventional methods. These curvature source terms could be avoided if the
discretization is carried out in a locally fixed coordinate system. In Karki’s formu-
lation, the derived discretization equation includes parallel velocities, instead of
the actual velocities, at the neighboring points for the velocity (e.g., un;P) in a local
coordinate system, as shown in Figure 2.

For highly nonorthogonal grids, the numerical scheme of the discretization
equation as such may not give a converged solution. This problem can be eliminated
by adding and subtracting the actual velocities in the discretization equation as
follows:

aPun;P ¼ aEun;E þ aWun;W þ aNun;N þ aSun;S þ b

þ aE �uun;E � un;E
� �

þ aW �uun;W � un;W
� �

þ aN �uun;N � un;N
� �

þ aS �uun;S � un;S
� �

ð14Þ

The same procedure can be used to find the discretized equation in the g direc-
tion to be solved along with the above equation for the velocity field. The solution of
the pressure field can be found by coupling the momentum equation with the conti-
nuity equation using the Semi-Implicit Method for Pressure–Linked Equations
(SIMPLE) algorithm of Patankar and Spalding [20]. Following this technique, the
resulting pressure-correction equation can be cast into the following form:

aPP
0
P ¼ aEP

0
E þ awP

0
W þ aNP

0
N þ aSP

0
S þ bþ bNO ð15Þ

where

aE ¼ an;eqe
DV
ae Dx

ð16Þ

aW ¼ an;wqw
DV
aw Dx

ð17Þ

aN ¼ ag;nqn
DV
an Dy

ð18Þ

aS ¼ ag;sqs
DV
as Dy

ð19Þ

aP ¼ aE þ aW þ aN þ aS ð20Þ

and

b ¼ ðanqu�nÞw � ðanqu�nÞe þ ðagqu�gÞs � ðagqu�gÞn ð21Þ
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bNO ¼ ðbnqugÞe � ðbnqugÞw þ ðbgqunÞn � ðbgqunÞs ð22Þ

where superscript (�) and (0) denote the guessed and corrected fields, respectively.
The momentum equations and the pressure-correction equation are solved iteratively
until convergence is achieved.

INDEPENDENT PARAMETERS

The in-line and staggered geometric configurations considered are shown in
Figure 1. The configuration is characterized by transverse pitch ST and longi-
tudinal pitch SL measured between the tube centers. Figure 3 shows an enlarged
view of two rows of an in-line flat tube bank that illustrates the domain of inte-
rest. The rows in the flow geometry are assumed to be of infinite extent in the
direction perpendicular to the paper, so that the flow pattern can be considered
as two-dimensional. Therefore, the computational domain is limited to the one
shown in Figure 3 by the hatched lines. The longitudinal tube diameter Db
is twice the length of a circular cylinder with diameter Da. The height H is

Figure 2. Actual and parallel neighboring velocity to un;P.
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equivalent to the transverse distance between two rows or the height of one
module, and L is the longitudinal distance between the tube centers of two suc-
cessive cylinders or the length of one module.

In this work, four different geometric configuration are considered. These
configurations are shown in Figure 4 for a single module. All these configurations
are considered with different values of H=Da and L=Da Calculations were
made for five different Re values (Re ¼ 25, 50, 100, 200, and 400) and for two
different Prandtl numbers (Pr ¼ 0.7). In all, 180 cases were studied. However, only
representative cases are chosen for discussion in this article. Re is defined as

Re ¼ ubDH

n
ð23Þ

where DH is taken to be twice the height H.
The value L=Da for the module of an in-line configuration is taken to be 4, as

shown in Figure 4a. The other three configuration are all staggered in position, and
the L=Da values are 7, 6, and 5, as shown in Figures 4b, 4c, and 4d, respectively.
Although half of the domain of an in-line module can be studied because of sym-
metry, the entire domain is studied to make sure that the results are symmetric,
which in itself is a degree validation.

GRID AND BOUNDARY CONDITIONS

In each configuration, the domain needs to be discretized into a structured grid
by using one of the grid-generation techniques. The Geometry and Mesh Building
Intelligent Toolkit (GAMBIT) was used for this task to handle the arbitrary-shaped
domain by which a body-fitted coordinate system was generated, and the irregular
physical domain was discretized into numerous square volumes. The resulting grid
distribution for a single in-line module is illustrated in Figure 5.

The computational domain was divided into three individual regions. These
regions are the entry region, the flats tube modules, and the exit region. A uniform
orthogonal grid was used for both entry and exit regions. The grid distribution

Figure 3. Enlarged view of two rows of an in-line flat tube bank.
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shown above (Figure 5) can be repeated successively to generate the domain of flat
tube modules. In this study, 10 consecutive flat tubes were included in the computa-
tional domain.

In Figure 5, the surfaces BC and FG are the top wall of the bottom tube and the
bottom wall of the top tube, respectively. A no-slip boundary condition was assigned
for these two surfaces, where both velocity components were set to zero at that
boundary ðu ¼ v ¼ 0Þ. These surfaces were subjected to constant wall temperature
ðT ¼ TwÞ condition. The lines AB, CD, EF, and GH are lines of symmetry where
no flow crosses these boundaries and the normal component of velocities and the
normal gradient of the parallel component of velocity are set to zero. Finally, the
lines AH and DE are recognized as the module inlet and module outlet, respectively.
A uniform inlet velocity profile was assigned at the inlet boundary condition
ðu ¼ UinÞ. A constant inlet temperature ðT ¼ TinÞ, different than the wall tempera-
ture, was assigned at the channel inlet. The streamwise gradients of all variables were
set to zero at the outlet boundary.

CONVERGENCE CRITERIA

The discretization equations obtained by integrating the governing partial
differential equations resulted in a set of linear algebraic equations for each variable
which need to be solved iteratively. Within each iteration, the set of linear algebraic
equations were solved sequentially. A set of these equations was solved using a line-
by-line method which is a combination of the tri-diagonal matrix algorithm and the
Gauss-Siedel procedure. Convergence could be declared if the maximum of
the absolute value of the mass residues was less than a very small number e

Figure 4. Configurations for a single module of: (a) in-line, L�4; (b) staggered, L�7; (c) staggered, L�6; (d)
staggered, L�5.

HEAT TRANSFER OVER A BANK OF FLAT TUBES 367



(e.g., 10�5). In this study, convergence was declared by monitoring the sum of the
residues at each node. Since the magnitude of un and ug are not known a priori,
monitoring the relative residuals is more meaningful. The relative convergence cri-
teria for un and ug and are defined as follows:

�RRun ¼
P

nodes aeun;e �
P

anbun;nb � buNO
� Ae PP � PEð Þ

�� ��
P
nodes

aeun;e
�� �� � eun ð24Þ

�RRug ¼
P

nodes anug;n �
P

anbug;nb � buNO
� An PP � PNð Þ

�� ��
P
nodes

anug;n
�� �� � eug ð25Þ

In the pressure equation, it is appropriate to check for mass imbalance in the conti-
nuity equation.
The convergence criterion for pressure was defined as follows:

RP ¼
X

nodes
bþ bNOj j � eP ð26Þ

The convergence criteria for temperature were defined as

RT ¼
X

nodes
aPTP �

X
anbTnb � bT �NO

���
��� � eT ð27Þ

Figure 5. Grid distributions for a single in-line configuration module.
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The numerical iteration criterion required that the normalized residuals of mass,
momentum, and energy be less than 10�6 for all cases considered in this study.

VALIDATION

The code developed here was validated by reproducing solutions for some
benchmark problems. The fluid flow and heat transfer in a parallel-plate channel
subjected to constant wall temperature were predicted. The Nusselt number for
the fully developed region between two parallel plates subjected to constant wall
temperature using the developed code is 7.56, which agrees favorably with the
Nusselt number value of 7.54 mentioned by many authors, such as Incropera
and DeWitt [21].

Fluid flow and heat transfer over a row of in-line cylinders placed between two
parallel plates was studied numerically by Kundu et al. [13]. They computed the flow
field using a finite-difference method. The physical domain was transformed into a
computational domain so that a rectangular domain could be used. The fluid was
assumed to be incompressible, with constant thermophysical properties. The numeri-
cal results were obtained by solving the vorticity and the stream-function equations
in dimensionless form. The entire domain was divided into several heat exchanger
modules (HEMs). Each HEM contained one cylinder and was bound by two fic-
titious surfaces located at the midsection between two consecutive cylinders. Except
for the first and the last HEM, the pressure drop and Nusselt number across a HEM
were almost constant for any specified Re.

Nondimensionalized pressure drop computed using the developed code is com-
pared with the numerical predictions of Kundu et a1. [13] and experimental data of
Kundu [22] in Figure 6. It is evident that there is a very good agreement between the
results obtained by the developed code and results in the literature [12, 22], thus
further validating the code. The average heat transfer coefficient and the correspond-
ing Nusselt number across the HEMs were also computed and studied. The com-
puted enthalpy between the HEMs was integrated to calculate the normalized
bulk temperature hb;i at the inlet and exit of each HEM. The heat flow Qi for each
HEM was computed by calculating the local heat flux and integrating the results
over all the surfaces of the HEM. The average heat transfer coefficient �hh was intro-
duced so that

Qi ¼ _mmcPðhb;i � hb;i�1Þ ¼ �hhð1� hm;iÞð2AP þ AiÞ ð28Þ

where the subscript i represents the module number, A is the area of the circular
cylinder, AP is the area of the plate, and hm;i is the average of the normalized bulk
temperatures at the inlet and exit of each HEM, defined as

hm;i ¼ 0:5ðhb;i þ hb;i�1Þ ð29Þ

Table 1 shows the average the Nusselt number (Nu) at two different Reynolds
numbers. The average Nusselt number is defined as Nu ¼ �hhDH=k, and the hydraulic
diameter DH is defined as the channel height (H). The geometric parameter values
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were L=D ¼ 3 and H=D ¼ 2 for the cases considered for validation. It is evident
from Table 1 that the numerical predictions of heat transfer using the developed code
agree very well with the numerical predictions of Kundu [13].

GRID INDEPENDENCE

The following parameters were considered in the grid independence test;
Db=Da ¼ 2, H=Da ¼ 4, L=Da ¼ 4, and Pr ¼ 0:7 at the highest Reynolds number
of 400 for the in-line configuration. The grid independence test was done for

Figure 6. Normalized pressure difference across the third HEM.

Table 1. Average Nusselt number for L=D ¼ 3 and H=D ¼ 2

2nd HEM 3rd HEM 4th HEM

Re ¼ 50

Kundu et al. [13] 9.4 9.4 9.8

Present work 9.228 9.229 9.229

Re ¼ 200

Kundu et al. [13] 12.5 12.6 12.8

Present work 12.44 12.43 12.42
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several grid sizes per module. These grids were 101� 101, 101� 121, 126� 121;
126� 151, and 151� 151 per module for 10 modules, in addition to the uniform
grid points in the entry and exit regions. It is evident from Tables 2 and 3 that
the maximum percentage difference in friction factor and average Nusselt number
for any module obtained by two successive grid sizes is less than 1%. Accordingly,
to minimize error and to optimize CPU resources, all parametric runs were made
with 101� 101 grid.

RESULTS AND DISCUSSION

The governing independent parameters influencing the fluid flow and heat trans-
fer over a bank of flat tubes are the Reynolds number (Re), Prandtl number (Pr), height
ratio (H=Da), length ratio (L=Da), the aspect ratio of the tube (Db=Da), and the
configuration or the positioning of the tubes (i.e., in-line or staggered). Table 4 shows
all of the configurations considered in this study. Each case is assigned a different name
and studied for a different combination of the Reynolds numbers (Re ¼ 25, 50, 100,
200, and 400) and two different Prandtl numbers representing air and water (Pr ¼ 0.7
and 7.0).

Although 180 different parametric runs were made, only representative
results are presented in this work, more detail can be found in Bahaidarah [23].
The effect of each parameter on the velocity profile, streamline, normalized tempera-
ture field, normalized pressure drop, and module average Nusselt number will be
discussed.

Figure 7 shows the streamwise developing velocity profiles along the exit of
each module. The velocity distribution is normalized by the value of the uniform
inlet velocity (Uo) and given as a function of Y=H, for both in-line and staggered
configurations. It can be established that as the Reynolds number increases, the
maximum velocity in the passage increases, whereas the negative velocity down-
stream, right behind the tubes, increases in magnitude to satisfy continuity. The velo-
city profile is nearly symmetric and repeats itself for other modules, except the first
and the last, due to entrance and exit effects. The flow is not fully developed in the
first module. Its profile is similar to other modules at low values of Reynolds num-
ber. At the exit of the last module, the velocity profile is slightly different due to the
absence of additional tubes downstream.

Comparison of Figure 7a with Figures 7c and 7e shows the most noticeable
changes in velocity profiles. These changes are due to the increase in the height ratio.
The maximum velocity in the middle ðY=HÞ of the passage decreases considerably
because of a larger flow area. The negative velocity in magnitude, downstream right
behind the tube, increases as the height ratio decreases. The flow attains periodicity
in further upstream modules as the height ratio decreases. For instance, when
Re ¼ 400 at H=Da ¼ 2, the flow attains a periodicity downstream of the second
module, as illustrated in Figure 7a. However, at the same Re for H=Da ¼ 3 or 4,
the flow attains a periodicity downstream of the fourth module, as illustrated in
Figures 7c and 7e.

The maximum velocity decreases slightly as the length ratio increases. The
velocity profile flattens as the length ratio increases. This is because the flow has
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enough length to recover to the condition of uniform inlet velocity profile before
being interrupted by the presence of the next tube module. This behavior is not
shown because it illustrates a less significant effect. However, the changes in length
due to different spacing between the upper and lower tubes in staggered arrange-
ments are shown in Figures 7b, 7d, and 7f. The symmetric condition is no longer
applicable as this arrangement comes into consideration.

The changes in results are more noticeable for the inner four modules with the
first and the last, especially at higher values of Reynolds numbers (Re ¼ 200 and
400). It has to be noted that the location of maximum velocity has been shifted
slightly to the top due to the absence of an obstacle (i.e., flat tube) at the top. As
the longitudinal spacing ðSLÞ between the upper and lower tubes decreases, the velo-
city tends to have higher values at the location of the maximum velocities as well as
negative velocity due to small tube spacing.

As can be seen from the velocity profiles presented earlier, most of the cases
attain periodically fully developed condition downstream of the first module (the
fourth in some cases). Thus, discussion of the fourth module will be enough to
show most of the details needed for examining the streamlines, instead of showing
the entire domain with dense repeated information. Figures 8a, 8c, and 8e show
the effect of Reynolds number on the nondimensional stream function for the
fourth module for an in-line arrangement, for H=Da ¼ 2 and L=Da ¼ 4. Flow sep-
aration can hardly be detected when Reynolds number as low as 25. As Reynolds
number increase, the separated flow covers a smaller portion of the domain until
it completely covers the area between two consecutive tubes at higher Reynolds
number. In fact, the entire area between two consecutive tubes is occupied by
recirculation at Re ¼ 200 and 400, though the center of the recirculation is
shifted slightly to the right, closer to the next tube, at Re ¼ 400. This significant
difference is a result of a higher flow speed, which pushes the recirculation
downstream a bit.

The streamlines shown in Figures 8a, 8c, and 8e are symmetric, but their mag-
nitudes are not, as the stream functions are set to 0 and 1 at Y=H ¼ 0 and 1, respect-
ively. For the staggered arrangement the streamlines are no longer symmetric
between two adjacent rows of flat tubes. Figures 8b, 8d, and 8f show the effect of
different values of tube spacing between the upper and lower rows (i.e., H=Da ¼ 2

Table 4. In-line and staggered configurations considered in this study

Configuration H=DA L=DA Configuration H=Da L=Da

In-line, H�2–L�4 2 4 Stagg., H�2–L�5 2 5

In-line, H�2–L�5 2 5 Stagg., H�2–L�6 2 6

In-line, H�2–L�6 2 6 Stagg., H�2–L�7 2 7

In-line, H�3–L�4 3 4 Stagg., H�3–L�5 3 5

In-line, H�3–L�5 3 5 Stagg., H�3–L�6 3 6

In-line, H�3–L�6 3 6 Stagg., H�3–L�7 3 7

In-line, H�4–L�4 4 4 Stagg., H�4–L�5 4 5

In-line, H�4–L�5 4 5 Stagg., H�4–L�6 4 6

In-line, H�4–L�6 4 6 Stagg., H�4–L�7 4 7
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Figure 7. Developing velocity profiles at each module outlet (MO) for both in-line and staggered arrange-

ments at Re ¼ 400: (a) in-line, H�2–L�4; (b) staggered, H�2–L�5; (c) in-line, H�3–L�4; (d) staggered, H�2–
L�6; (e) in-line, H�4–L�4; (f) staggered, H�2–L�7.
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and L=Da ¼ 5, 6, and 7) on the nondimensional stream function for the fourth
module at Re = 400. The recirculation behind the upper tube is smaller in size when
compared to the one behind the lower tube. This is due to the fact that half of the
lower tube is located vertically in the same position as the recirculation behind the
upper tube, which pushes the streamlines toward the top. This restricts the upper
recirculation and results in minimizing its size due to the reduction in the flow
cross-sectional area.

The spacing between the upper and lower tubes can be increased by shifting the
lower tube toward the right. When all the lower tubes push the streamlines to the
top, the recirculation behind the upper tubes becomes smaller and even disappear
at moderate Reynolds number (Re ¼ 100). Further increase in the spacing between
the upper and lower tubes does not decrease the upper recirculation. In fact, the

Figure 8. Nondimensional stream function for the fourth module for both in-line and staggered arrange-

ments: (a) in-line, H�2–L�4, Re ¼ 50; (b) staggered, H�2–L�5, Re ¼ 400; (c) in-line, H�2–L�4, Re ¼ 200;

(d) staggered, H�2–L�6, Re ¼ 400; (e) in-line, H�2–L�4, Re ¼ 400; (f) staggered, H�2–L�7, Re ¼ 400.
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recirculation increases because there is enough distance between the rear edge of the
upper tube and the front edge of the lower tube for the flow to expand as shown in
Figure 8f. This fact is documented in Table 5, which lists the minimum and
maximum values of nondimensional stream function at Re ¼ 400.

Figures 9a and 9b show the effect of Reynolds number on the normalized tem-
perature lines (isotherms). All isotherms range from 0 to 1, which represents a low
fluid temperature at the inlet to higher fluid temperature as it reaches the hot tube
surface. As the Reynolds number increases, the lower value isotherms penetrate dee-
per, which means the colder fluid is getting closer to the hot surface. As a result of
this behavior, the heat transfer is increased, as will be shown later in the computed
Nusselt number. A comparison of Figures 9c and 9d with Figure 9a shows the effect
of varying the height and length ratios on the isotherms. An increase in height ratio
makes the cold isotherms penetrate farther downstream. However, the colder iso-
therms are farther from the hot tube surface, which implies lower heat transfer.
The impact of varying length ratio on isotherms is minimal and thus does not have
much of an impact on heat transfer. For in-line arrangement of flat tubes, the sym-
metric condition is preserved because of symmetric geometry. This is not the case for
the staggered arrangement with different length spacing, as shown in Figure 9e. It is
clear that the flow is pushed up as a result of the presence of the lower tube. All iso-
therms given above, Figures 9a–9e, are for air (Pr ¼ 0.7). Figure 9f has the same
parameters as Figure 9a except for the Prandtl number. Increase in Pr significantly
affects distribution of isotherms. At a higher value of Pr the isotherms are more den-
sely packed, implying better heat transfer. This behavior is more pronounced at
higher Reynolds numbers (Re ¼ 400).

Since the velocity profile is nearly symmetric (for the in-line arrangement only)
and repeats itself for other modules, the pressure drop across the modules has
spatially periodic behavior. This is the primary reason that the computed pressure
drop is nearly constant for all modules except the first and the last. Numerical
data for dimensionless pressure differences across the interior modules for both
in-line and staggered arrangements can be found in Table 6. The data show that
the values are nearly constant for a given Reynolds number and a fixed set of
aspect ratios.

Figure 10 provides the normalized pressure drop for the fourth module for
both in-line and staggered configurations. Figure 10a shows the impact of height
ratio on the normalized pressure drop at fixed length ratio (L=Da ¼ 4). As the height

Table 5. Minimum and maximum values of stream function (w�), for both in-line and staggered config-

urations, H=Da ¼ 2, Re ¼ 400

In-line arrangement Staggered arrangement

L=Da W�
min W�

max W�
min W�

max

4 �0.0265 1.0224 — —

5 �0.0263 1.0225 �0.0514 1.0191

6 �0.0268 1.0228 �0.0275 1.0067

7 — — �0.0176 1.0077
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ratio increases, the normalized pressure drop decreases. Figure 10b shows the impact
of length ratio on the normalized pressure drop at fixed height ratio (H=Da ¼ 2). It
can be clearly stated that the length ratio has very little effect or even a negligible
effect on pressure drop. As expected, the normalized pressure drop decreases
monotonically with an increase in Re. The normalized pressure drop behavior for
a staggered configuration, is similar to that for an in-line configuration, as shown
in Figures 10c and 10d.

Tables 7 and 8 show the computed average Nusselt number for the interior
modules for both in-line and staggered arrangements at Pr ¼ 0.7 and 7.0, respectively.
As expected, the average Nusselt number is higher for Pr ¼ 7.0 compared to that for
Pr ¼ 0.7. From these tables, it is evident that for a given Reynolds number the module
average Nusse1t number remains fairly constant, thus signifying the existence of a

Figure 9. Isotherms for the fourth module for both in-line and staggered arrangements: (a) in-line, H�

2–L�4, Re ¼ 25; (b) in-line, H�2–L�4, Re ¼ 200; (c) in-line, H�3–L�4, Re ¼ 25; (d) in-line, H�2–L�6,
Re ¼ 25; (e) staggered, H�2–L�5, Re ¼ 25; (f) in-line, H�2–L�4, Re ¼ 25, Pr ¼ 7.0.
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thermally periodically fully developed flow condition. However, both in-line and stag-
gered configurations do not attain thermally periodically fully developed condition at
Re ¼ 400 for Pr ¼ 7.0. Figures 11a–11d show the module average Nusselt number
for both in-line and staggered arrangements. The qualitative behavior of module
average Nusselt number for Pr ¼ 7.0 is similar to that for Pr ¼ 0.7.

The effectiveness of using flat tubes was evaluated by studying the ratio of the
module average Nusselt number for periodically fully developed flow of flat tube
configurations and the module average Nusselt number for periodically fully
developed flow for circular tube configurations. Henceforth, this ratio will be
referred to as the heat transfer enhancement ratio ðNuþi ¼ Nui;Flat=Nui;CircularÞ. It

Table 6. Modules DP� for both in-line and staggered arrangements at selected Reynolds numbers

In-line arrangement Staggered arrangement

H=DA Re 2nd 3rd 4th 5th 2nd 3rd 4th 5th

L=Da ¼ 4 L=Da ¼ 5

2 25 9.094 9.102 9.114 9.125 7.845 7.844 7.840 7.836

100 2.665 2.652 2.649 2.647 2.490 2.484 2.484 2.483

400 1.049 0.968 0.970 0.941 1.115 0.943 0.925 0.921

3 25 3.336 3.338 3.339 3.339 3.568 3.563 3.562 3.561

100 0.942 0.914 0.912 0.912 1.079 1.052 1.055 1.055

400 0.375 0.314 0.284 0.269 0.465 0.363 0.341 0.330

4 25 2.055 2.059 2.060 2.060 2.379 2.371 2.372 2.372

100 0.584 0.549 0.543 0.542 0.690 0.662 0.661 0.661

400 0.233 0.202 0.180 0.167 0.285 0.233 0.212 0.200

L=Da ¼ 5 L=Da ¼ 6

2 25 9.201 9.199 9.191 9.181 4.702 4.696 4.686 4.676

100 2.823 2.817 2.816 2.817 1.628 1.627 1.627 1.628

400 1.083 0.975 0.958 1.002 0.746 0.673 0.655 0.652

3 25 3.449 3.448 3.443 3.436 3.025 3.023 3.023 3.022

100 1.014 0.996 0.996 0.997 0.993 0.976 0.976 0.976

400 0.423 0.352 0.324 0.320 0.465 0.367 0.344 0.335

4 25 2.165 2.166 2.168 2.170 2.305 2.295 2.295 2.295

100 0.633 0.604 0.602 0.602 0.710 0.685 0.685 0.685

400 0.250 0.216 0.198 0.192 0.312 0.245 0.225 0.215

L=Da ¼ 6 L=Da ¼ 7

2 25 9.212 9.212 9.210 9.207 3.278 3.276 3.276 3.277

100 2.928 2.924 2.923 2.922 1.258 1.256 1. 254 1.254

400 1.154 1.028 1.032 1.046 0.579 0.524 0.511 0.508

3 25 3.490 3.489 3.486 3.482 2.412 2.412 2.415 2.420

100 1.061 1.049 1.050 1.05! 0.861 0.851 0.852 0.853

400 0.408 0.310 0.286 0.300 0.416 0.346 0.322 0.314

4 25 2.217 2.221 2.226 2.231 2.026 2.018 2.017 2.017

100 0.665 0.643 0.642 0.643 0.671 0.650 0.650 0.649

400 0.273 0.232 0.216 0.215 0.310 0.244 0.224 0.213
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has to be noted that the circumference of a flat tube is equal to that of a circular tube
in order to establish a valid comparison.

Table 9 shows the heat transfer enhancement ratio of the fourth module for
both in-line and staggered configurations with fixed height ratio (H=Da ¼ 3) and
length ratio (L=Da ¼ 5 and 6). The heat transfer enhancement ratio is less than
unity, indicating that circular tubes outperform flat tubes. The heat transfer
enhancement ratio decreases with an increase in Reynolds number, signifying that
the increase in Nusselt number is higher for circular tubes when compared to flat
tubes. As expected, the staggered configurations perform better than the in-line con-
figurations from a heat transfer point of view.

The effectiveness of using flat tubes can also be studied by evaluating the heat
transfer performance ratio. The heat transfer performance ratio is defined as the
ratio of heat transfer enhancement to unit increase in pumping power, which can
be written as Nu�i ¼ Nuþi =ðfi;Flat=fi;CircularÞ

1=3. The friction factors are raised to the
one-third power, as the pumping power is proportional to the one-third power of
the friction factor. For applications where the pumping ratio is of concern, the heat
transfer performance ratio should be greater than unity. As evident from Table 10,

Figure 10. Normalized pressure drop across the fourth module for in-line arrangements: (a) in-line, L�4;
(b) in-line, H�2; (c) in-line, L�5; (d) in-line, H�3.
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this ratio is always higher than 1, signifying the importance of such an application
from the pumping power point of view.

SUMMARY

A detailed numerical study was conducted on a two-dimensional flow and heat
transfer over flat tube bundles found in heat exchanger applications. Both in-line and
staggered arrangements were considered in the study. The effects of the Reynolds
number (Re), Prandtl number (Pr), length ratio (L=Da), and height ratio (H=Da)
on the developing velocity profiles, streamlines, isotherms, pressure drops, and mod-
ule average Nusselt numbers (Nu) were examined.

Table 7. Average Nusselt number for interior modules for both in-line and staggered arrangements,

Pr ¼ 0.7

In-line arrangement Staggered arrangement

H=Da Re 2nd 3rd 4th 5th 2nd 3rd 4th 5th

L=Da ¼ 4 L=Da ¼ 5

2 25 10.38 10.38 10.39 10.39 9.99 9.99 9.99 9.99

100 14.61 14.60 14.60 14.60 14.63 14.63 14.63 14.63

400 18.07 17.33 17.29 17.44 19.75 18.78 18.73 18.71

3 25 10.75 10.75 10.75 10.75 10.94 10.94 10.94 10.94

100 12.86 12.82 12.82 12.82 13.79 13.74 13.75 13.76

400 16.14 14.74 14.21 14.02 17.45 16.30 15.95 15.86

4 25 10.85 10.85 10.85 10.85 11.52 11.51 11.51 11.51

100 12.42 12.24 12.23 12.23 13.63 13.50 13.50 13.50

400 16.14 14.50 13.67 13.27 17.74 16.05 15.35 15.07

L=Da ¼ 5 L=Da ¼ 6

2 25 10.43 10.44 10.44 10.43 8.77 8.78 8.78 8.78

100 15.16 15.16 15.16 15.15 13.37 13.40 13.40 13.41

400 19.41 18.73 18.59 18.54 18.09 17.54 17.49 17.49

3 25 11.05 11.05 11.05 11.05 10.46 10.46 10.46 10.46

100 13.75 13.73 13.73 13.74 13.97 13.95 13.96 13.97

400 17.24 15.97 15.62 15.52 18.35 17.10 16.82 16.77

4 25 11.46 11.46 11.47 11.47 11.54 11.53 11.54 11.54

100 13.49 13.38 13.38 13.38 14.31 14.21 14.22 14.23

400 17.55 15.82 15.12 14.80 18.88 17.16 16.57 16.35

L=Da ¼ 6 L=Da ¼ 7

2 25 10.44 10.45 10.44 10.44 7.80 7.80 7.81 7.81

100 15.51 15.51 15.51 15.51 12.59 12.64 12.65 12.65

400 20.07 19.59 19.49 19.45 17.48 17.03 16.98 16.98

3 25 11.15 11.15 11.15 11.15 9.79 9.80 9.80 9.80

100 14.36 14.35 14.35 14.35 13.80 13.84 13.87 13.87

400 18.21 17.03 16.74 16.61 18.73 17.55 17.29 17.25

4 25 11.72 11.72 11.73 11.73 11.25 11.25 11.26 11.26

100 14.26 14.19 14.19 14.19 14.58 14.54 14.57 14.57

400 18.60 16.93 16.31 16.08 19.69 17.96 17.43 17.25
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Numerical data for the dimensionless pressure difference for the interior mod-
ules show that the values are nearly constant for a given Reynolds number and a
fixed set of geometric ratios, implying that the flow has attained periodicity in
interior modules. The module average Nusselt number for Pr ¼ 0.7 for a given Re
and geometric ratios reaches thermally fully developed flow condition downstream
of the second module except for Re ¼ 400. In all cases, nondimensionalized pressure
drop decreases monotonically with an increase in Reynolds number. On the other
hand, the module average Nusselt number increases with an increase in the Reynolds
number. The results at Pr ¼ 7.0 indicate an increase in the computed module average

Table 8. Average Nusselt number for interior modules for both in-line and staggered arrangements,

Pr ¼ 7.0

In-line arrangement Staggered arrangement

H=Da Re 2nd 3rd 4th 5th 2nd 3rd 4th 5th

L=Da ¼ 4 L=Da ¼ 5

2 25 15.70 15.46 15.44 15.44 15.97 15.83 15.82 15.82

100 21.06 19.16 18.37 17.99 22.05 20.64 20.17 20.00

400 43.46 37.33 34.88 34.44 52.19 41.95 39.98 39.28

3 25 14.19 13.48 13.31 13.27 15.32 14.71 14.59 14.56

100 19.37 17.27 16.21 15.57 21.49 19.35 18.37 17.83

400 35.20 31.l7 28.46 26.82 36.91 34.43 32.17 31.11

4 25 14.14 13.11 12.74 12.61 15.59 14.59 14.29 14.19

100 19.87 17.44 16.21 15.43 22.08 19.57 18.33 17.57

400 32.67 29.89 27.26 25.59 36.33 32.85 30.27 28.87

L=Da ¼ 5 L=Da ¼ 6

2 25 16.57 16.41 16.40 16.40 14.54 14.48 14.49 14.49

100 22.00 20.37 19.69 19.39 21.01 19.80 19.36 19.20

400 46.16 39.72 35.94 33.01 40.92 36.81 35.37 34.78

3 25 15.25 14.66 14.54 14.52 15.48 15.02 14.95 14.94

100 20.84 18.74 17.69 17.07 22.40 20.31 19.37 18.85

400 36.07 31.58 29.48 28.14 39.06 35.19 33.11 32.12

4 25 15.35 14.41 14.12 14.03 16.36 15.46 15.22 15.16

100 21.54 19.09 17.83 17.05 23.57 21.01 19.77 19.00

400 36.37 31.83 29.41 27.68 38.66 34.63 32.15 30.79

L=Da ¼ 6 L=Da ¼ 7

2 25 17.17 17.06 17.06 17.06 13.53 13.52 13.54 13.55

100 23.01 21.45 20.83 20.57 20.26 19.24 18.85 18.70

400 48.11 40.32 36.72 33.62 38.92 35.19 33.71 33.09

3 25 16.00 15.53 15.45 15.43 15.16 14.84 14.81 14.81

100 22.04 19.99 18.96 18.37 22.51 20.66 19.79 19.31

400 38.33 33.56 31.43 29.23 40.35 35.64 33.50 32.40

4 25 16.23 15.42 15.19 15.13 16.54 15.82 15.65 15.61

100 22.90 20.48 19.23 18.46 24.29 21.85 20.65 19.92

400 38.31 33.24 30.52 28.83 40.76 35.81 33.28 31.81
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Table 9. Heat transfer enhancement ratio (Nuþ ) for the fourth module

Re In-line, H�3–L�5 In-line, H�3–L�6 Staggared, H�3–L�5 Staggared, H�3–L�6

25 0.942 0.937 0.944 0.972

50 0.932 0.929 0.931 0.955

100 0.918 0.922 0.918 0.939

200 0.881 0.896 0.886 0.912

400 0.833 0.830 0.785 0.891

Figure 11. Average Nusselt number for the fourth module, for both in-line and staggered arrangements:

(a) in-line, H�2, Pr ¼ 0.7; (b) in-line, H�2, Pr ¼ 7.0; (c) staggered, H�2, Pr ¼ 0.7; (d) staggered, H�2,
Pr ¼ 7.0.

Table 10. Heat transfer performance ratio (Nu�) for the fourth module

Re In-line, H�3–L�5 In-line, H�3–L�5 Staggered H�3–L�5 Staggered H�3–L�6

25 1.154 1.143 1.105 1.056

50 1.165 1.154 1.116 1.070

100 1.175 1.180 1.140 1.096

200 1.152 1.172 1.144 1.125

400 1.067 1.131 1.065 1.323
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Nusselt number when compared to that for Pr ¼ 0.7. For both in-line and staggered
configuration, the flow does not attain a periodically fully developed condition at
Pr ¼ 7.0 and Re ¼ 400.

The heat transfer enhancement ratio is less than unity, which indicates that
circular tubes outperform flat tubes from a heat transfer point of view. However,
the heat transfer performance ratio is always higher than 1, signifying the impor-
tance of such application from the pumping power point of view. As expected, the
staggered configurations perform better than the in-line configurations from a heat
transfer point of view.
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