Chapter 11:

Thermodynamic
Property Relations

A LITTLE MATH—PARTIAL DERIVATIVES
AND ASSOCIATED RELATIONS

Many of the expressions developed in this chapter are based on the state
postulate, which expresses that the state of a simple, compressible substance is
completely specified by any two independent, intensive properties.

Mathematically speaking: z=z2(x,y)

Most basic thermodynamic relations involve
differentials.

Therefore, we start by reviewing the derivatives of
a function f'that depends on a single variable x.
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The steepness of the curve is a measure of the f(x)
degree of dependence of fon x.

Therefore, the derivative of a function f{x) with
respect to x represents the rate of change of f with
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Partial Differentials
Now consider a function that depends on two variables, such as z=z(x, y).

It is sometimes desirable to examine the dependence of z on only one of the
variables. This is called the partial derivative of z with respect to x, and it is

expressed as: _
(GZJ :gm(gJ _ i 26+ AY,Y) -z (L)
y
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The symbol d represents the fotal differential
change of a function, whereas O represents
the partial differential change due to the
variation of a single variable.

Note that the changes indicated by both
symbol are identical for independent
variables, but not for dependent variables.

For example,
(0x )y =dx but (0z )y #dz

Partial Differentials

To obtain a relation for the total differential change in z(x, y) for simultaneous
changes in x and y, consider a small portion of the surface z(x, y) shown
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Example 11-2
Total Differential versus Partial Differential

Consider air at 300 K and 0.86 m3/kg. The state of air changes to 302 K
and 0.87 m3/kg as a result of some disturbance. Using Eq. 12-3, estimate
the change in the pressure of air.

p 5 P, kP
dp = (E) dT + (f) ay=2¢0_ Y i (@P), = 0.664
aT ), /)y v v? dP = —0.491
_ o o i 2K (301 K)(0.01 m‘/kg)}
= (0.287 kPa - m’/kg K)L).xﬁs kg (0.865 m/kg)? @P); = ~1.155
= 0.664 kPa — 1.155 kPa NF
= —0.491 kPa j—
aP
=) ar = (9P), = 0.664 kPa
aT ),
aP
(—) dv = (aP); = —1.155 kPa 300, __
av /),
8022 oy oo
dP = (0P), + (oP); = 0.664 — 1155 = —0.491 kPa  f7 ..

Partial Differential Relations
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Where M= (g) and N = (gJ
ox J, 6‘}3 .

Taking the partial derivative of M with respect to y and of N with respect

to x yields oM\ &z ( oNY &z
= and =
oy ), @éxdy ox J, ayex

Since properties are continuous point functions and have exact differentials,

the following is true
oM\ ( &N"J
a}‘ v ax ¥

This relation forms the basis for the development of the Maxwell relations
discussed in the next section. 6




Partial Differential Relations

Finally, we develop two important
relations for partial derivatives:

the reciprocity relation.

ox

the cyclic relation.
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Example 11-3

Verification of Cyclic and Reciprocity Relations

Using the ideal-gas equation of state, verify:

(a) the cyclic relation and

(b) the reciprocity relation at constant P.




THE MAXWELL RELATIONS

The equations that relate the partial derivatives of properties P, v, 7, and s
of a simple compressible substance to each other are called the Maxwell
relations.

They are obtained from the four Gibbs equations. du=Tds— Pdv
The first two of the Gibbs equations are those resulting
from the internal energy « and the enthalpy /. dh=Tds+vdP

The second two Gibbs equations result from the definitions of the Helmholtz
function ¢ and the Gibbs function g defined as

a=u-Ts g=h-Ts
da=du -Tds —sdT dg =dh -Tds —sdT
da =—-sdT — Pdv dg =—sdT +vdP

A careful examination of the four Gibbs relations reveals that they are

of the form: -
oM\ ( oN )
5:]" . - v , 9

dz =M dx +N dy

THE MAXWELL RELATIONS

The four Gibbs equations.

(&u) -
du =Tds — Pdv ay ),
dh =Tds +vdP

dg =—sdT +vdP . R
oT ov

da =—sdT — Padv el e B
oP ). \0Os ),

A careful examination of the four
Gibbs relations reveals that they
are of the form:

dz =M dx +N dy
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THE MAXWELL RELATIONS

Setting the second mixed partial derivatives equal for these four functions
yields the Maxwell relations.

They are extremely
valuable in
thermodynamics
because they provide
a means of
determining the
change in entropy,
which  cannot be
measured directly, by
simply measuring the
changes in properties
P,v,and T.
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Example 11-4
Verification of the Maxwell Relations

Verify the validity of the last Maxwell relation for steam at 250°C and 300

kPa.
#.4-(3)
(—)P T _ aT P

As’ ? (ﬂ)
(AP) T=250°C AT / P =300kPa

[5400 kPa 5200 kP:1:| 7| Ysoore — Vaooe
(400 — 200) kPa]r (300 — 200)°C |p = 300 kPa

(7.3804 — 7.7100) kI /kg-K ,  (0.87535 — 0.71643) m’/kg
(400 — 200) kPa = (300 — 200)°C

—0.00165 m¥/kg - K = —0.00159 m'/kg - K

=250°C
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THE CLAPEYRON EQUATION

The Clapeyron equation enables us to determine the enthalpy change
associated with a phase change (such as the enthalpy of vaporization h,)
from a knowledge of P, v, and T data alone.

P
dr )., Tv, \dT ),

Ve
LIQUID
It enables us to determine the enthalpy of
vaporization /,, at a given temperature by SOLID
simply measuring the slope of the saturation
curve on a P-T diagram and the specific
volume of saturated liquid and saturated VAPOR

%)
= = const.
sat

o7

NF—————— =
~

vapor at the given temperature.

The Clapeyron equation is applicable to any phase-change process that
occurs at constant temperature and pressure. It can be expressed in a

general form as h, ( dr j
Tv, \dl ), 1

Example 11-5
Evaluating the /i, of a Substance from the P-v-T Data

Using the Clapeyron equation, estimate the value of the enthalpy of
vaporization of refrigerant-134a at 20°C, and compare it with the tabulated
value.

Ve = (V, = Yaare = 0035969 — 0.0008161 = 0.035153 m*/kg

(E) - (E) _ Paewc = Pueisc
dT / waoc AT/ aoc 24°C — 16°C

_ 646.18 — 504.58 kPa
8°C dpP
hfg :vag (_j
since AT(°C) = AT(K). Substituting, we get =\dT ),

= 17.70 kPa/K

. 1 kJ
By = (293.15 K) (0.035153 m/kg) (17.70 kPa/K)<F>
o asm

= 182.40 kJ/kg
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THE CLAPEYRON EQUATION

Clapeyron-Clausius Equation

For liquid-vapor and solid-vapor phase-change processes at low pressures, an
approximation to the Clapeyron equation can be obtained by treating the
vapor phase as an ideal gas and neglecting the specific volume of the
saturated liquid or solid phase compared to that of the vapor phase. At low

pressures vg S>> vf
h
By, :(d_PJ Vi SV, }ggT :[d_Pj
v, \dT ), RT 7L \dT
b

For small temperature intervals, /1, can be treated as a constant at some
average value. Then integrating this equation between two saturation states

yields:
ln(iJ = hﬁ(—z 1, J
lDl sart R i T1T2 / saft

This equation is called the Clapeyron—Clausius equation, and it can be
used to determine the variation of saturation pressure with temperature. e

Example 11-6
Extrapolating Tabular Data with the Clapeyron Equation

Estimate the saturation pressure of refrigerant-134a at -50°F, using the data
available in the refrigerant tables.

(Pz) h.ffu( 1 1 )
(=] ==—=-=
Pl sat R Tl TZ sat

In our case T, = —40°F and T, = —50°F. For refrigerant-134a, R = 0.01946
Btu/lbm - R. Also from Table A-11E at —40°F, we read h,, = 97.100 Btu/lbm
and P, = P, @ _ao:r = 7-432 psia. Substituting these values into Eq. 12-24
gives

| ( P, ) ~97.100 Btu/Ibm ( 1 | )
N 7.432psia/  0.01946 Btu/lbm - R\ 420R  410R
P, = 5.56 psia

Extrapolation does not work !!! G




GENERAL RELATIONS FOR du, dh, ds, c,, AND c,

The calculation of the properties that cannot be measured directly (such as
internal energy, enthalpy, and entropy) from measurable ones (such as
pressure, temperature, and specific volume) depends on the availability of
simple and accurate relations between the two groups.

In this section we develop general relations for changes in internal energy,
enthalpy, and entropy in terms of pressure, specific volume, temperature,
and specific heats alone.

We also develop some general relations involving specific heats.

We usually start with finding the total derivative of z=z(x,y) where z is
represented by one of the hard to measure properties (u, 4, or s) and X, y
are represented by any two of the measurable properties (T, v, or P).

Then, each partial differential term is replaced by other terms of the
measurable properties with the help of the four Gibbs equations and the
Sfour Maxwell relations. 17

Internal Energy Changes

w(T, v) s = s(T, v)
) 75 oK
T+ ((—”) dv ds = (2) dT + <2> dv
v v T JaT /, v T
du ~(e T v du = Tds|— Pdy " Cibbs
4 ‘ equations

du = dT—i—
P

ds
Maxwell relations. <_T = (E)

ap
die = ¢, dT + {T(—) = P} dv
aT / 18
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Internal Energy Changes

The change in internal energy of a simple compressible system associated
with a change of state from (7, v;) to (75, v,) is determined by integration:

-
dit=C,dT + T(OP) —Pdv
arT ),

In reality, one needs only to determine either u,-u;, or h,-h,, depending on
which is more suitable to the data at hand.
The other can easily be determined by using the definition of enthalpy A=u+Pv

Enthalpy Changes and Entropy Changes

dh=C,dT +|v- T( i‘) dP
We could also find the oT J,

following relations for dh and ds C AP

where h = W(T,P) and s = s(T,y) ds=—-dT +( R ) dv
T ol J,

ors =s(T,P) ; '

=”dT—(fv) ar 19
T or /),

ds

Example 11-7
Internal Energy Change of a van der Waals Gas

Derive a relation for the
internal energy change as a
gas that obeys the van der
Waals equation of state.
Assume that in the range of
interest ¢, varies according to
the relation ¢, = ¢, + ¢,T,
where ¢, and c, are constants.

T [ ap
iy — Uy = c, dT + {T(*) - P] dv
Iy J it /y

v
The van der Waals equation of state is
_ e
Vb V2

(7).~
arj, v—=on

T(E)—P* RT  RT La_a
at /), v—b v—b v

Substituting gives

Then

Thus,

(T2 i
Hy — ) = J (c) + ¢;T) dT +
Iy Wy

a

— dv
Vi
Integrating yields

[} 1
=y = el = T) + T3 = 7)) + “(7. - ;2)
which is the desired relation.

20
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Specific Heats ¢, and ¢,
Recall that the specific heats of an ideal gas depend on temperature only.

For a general pure substance, however, the specific heats depend on specific
volume or pressure as well as the temperature.

Below we present some general relations to relate the specific heats of a
substance to pressure, specific volume, and temperature.

C, 8P oc,) _ (&P
d5'=7dT+[BT]Vdv ﬂ _(g) ( oy )T*T(@Tz J‘
ay ). \ox ),

. 3 oC, Gy
ds=&dr-(‘“’] dp (Oq—pJ :—T(%J
T . or ). or »

ar
Let C,, be the ideal-gas, zero-pressure, specific heat at constant pressure.
The deviation of C, from C,, is determined by integrating from zero
pressure to any pressure P along an isothermal path:

Py A2 0
. av
o n=lGan =T (- ,) dP
r ? -O[ art ),

Given the equation of state, we can evaluate the right-hand side and
determine the actual specific heat as C, = C(T.P). 21

Specific Heats ¢, and ¢,
Another desirable general relation involving specific heats is one that

relates the two specific heats ¢, and c,.

The advantage of such a relation is obvious:
We will need to determine only one specific heat (usually ¢,) and calculate
the other one using that relation and the P-v-T data of the substance.

Here we present some general relations to relate these two specific heats to

each other as:
cj_cv:T(élJ(éﬂj
! P aT v

oT
: , - - ovY(op
An alternative form of this relation is C,-C=-T—||—
) . . : oT )\ év ),
obtained by using the cyclic relation: )
)
C,-C, =
a

where [ is the volume expansivity and (5 15
a is the isothermal compressibility, — f= (m) il (e _( o )
defined as: i P il Z
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Specific Heats ¢, and ¢,

It is called the Mayer relation in honor of the German physician and

physicist J. R. Mayer (1814—1878). T B
c, -c, =17

. . . o
We can draw several conclusions from this equation:

1. The isothermal compressibility a is a positive quantity for all substances
in all phases. The volume expansivity could be negative for some
substances (such as liquid water below 4°C), but its square is always
positive or zero. The temperature 7 in this relation is thermodynamic
temperature, which is also positive. Therefore we conclude that the
constant-pressure specific heat is always greater than or equal to the
constant-volume specific heat: C,>C,

2. The difference between ¢, and c, approaches zero as the absolute
temperature approaches zero.

3. The two specific heats are identical for truly incompressible substances
since v = constant. The difference between the two specific heats is very
small and is usually disregarded for substances that are nearly,,
incompressible, such as liquids and solids.

Example 11-9
The Specific Heat Difference of an Ideal Gas

Show that C,, - C,, = R for an ideal gas.

(57, (%), - 5 () -+

24
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THE JOULE-THOMSON COEFFICIENT

When a fluid passes through a restriction such as a porous plug, a
capillary tube, or an ordinary valve, its pressure decreases.

However, the enthalpy of the fluid remains approximately constant
during such a throttling process.

You will remember that a fluid may experience a large drop in its
temperature as a result of throttling, which forms the basis of operation
for refrigerators and air conditioners. T

o. o Py T, P, T
This is not always the case, however. “ (varied) T (fived)

The temperature of the fluid may remain
unchanged, or it may even increase
during a throttling process. Exit states
The temperature behavior of a fluid
during a throttling (A = constant)
process is described by the Joule-
Thomson coefficient, defined as:

e(3)
" \ep), ek

THE JOULE-THOMSON COEFFICIENT

Notice that during a throttling process <0 temperature increases
T M, 4=0 temperature remaines constant
{ =
Hor 0P J, >0 temperature decreases

A careful look at its defining equation reveals
that the Joule-Thomson coefficient represents the B 5 LT,
slope of 4 = constant lines on a 7-P diagram. T (varied) T (fixed)
Such diagrams can be easily constructed from
temperature and pressure measurements alone
during throttling processes. A fluid at a fixed Exit states
temperature and pressure 7; and P, (thus fixed
enthalpy) is forced to flow through a porous plug,
and its temperature and pressure downstream (7,
and P,) are measured. The experiment is repeated
for different sizes of porous plugs, each giving a 1
different set of 7, and P, Plotting the 3
temperatures against the pressures gives us an 4 =
constant line on a 7-P diagram, as shown. 20

T

h = constant line 2
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THE JOULE-THOMSON COEFFICIENT

Repeating the experiment for different sets of inlet pressure and temperature
and plotting the results, we can construct a 7-P diagram for a substance
with several 4 = constant lines, as shown

Some constant-enthalpy lines on the 7-P

Maximum inversion
temperature

diagram pass through a point of zero slope or
zero Joule-Thomson coefficient. The line that
passes through these points is called the
inversion line, and the temperature at a point
where a constant-enthalpy line intersects the
inversion line is called the inversion !
temperature. The temperature at the '

intersection of the P = 0 line (ordinate) and !

the upper part of the inversion line is called I rerisn 1R
the maximum inversion temperature. Notice /
that the slopes of the 4 = constant lines are /
negative (L, < 0) at states to the right of the

ht = const.

inversion line and positive (1;; > 0) to the left
of the inversion line.

THE JOULE-THOMSON COEFFICIENT

Next we would like to develop a general relation for the Joule-Thomson
coefficient in terms of the specific heats, pressure, specific volume, and
temperature.

This is easily accomplished by modifying the generalized relation for

enthalpy change
dh = CPdT+|:v— r(f—‘) }dP
T j,

For an 4 = constant process we have d/ = 0. U= (CT)
Then this equation can be rearranged to give n

1 ov
{,=— v—T
#r="C [J)

P

28
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Example 11-10
Joule-Thomson Coefficient of an Ideal Gas
T

Show that the Joule-Thomson h = constant line
coefficient of an ideal gas is zero. '

P, P, P

() -£
ar), P

Substituting this into Eq. 12-52 yields

__l{uT(ﬂ> } __l{u Tﬂ} — ,L(Vf V) =0
MaT ("p aT P CP P C[,

THE Ah, Au, AND As OF REAL GASES

Pv Pv . e
=1 = Z Generalized Compressibility chart
14 %“";‘w—t—«t . Tyf=2.00 L
e
. 4 Y 39, T=L. Cu .
08 K\Q‘%\NM L) o MM//) 2‘/
2> 1 ARV RS
< %R o | o |oat™x [
BN NG S
Ty=1.20
deal Gas VA T
L 05 b~ s
Z - 1 \ Tk 1.10
04 SCEM oo Legend: -
. i Sikbwe o bosonac |
N /‘o/” ABbme & Niogn
o Cl anpom v
Average curve based on data on
hydrocarbons
o l0 05 1.0 L5 20 25 3.0 35 40 45 5.‘0 5?5 6?0 6.‘5 70

Reduced pressure, P, 4
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THE Ah, Au, AND As OF REAL GASES

Enthalpy Changes of Real Gases

= = 7 7 B B Z, is the enthalpy
b=l = (hz hl)ideal RI, (Z"z Z"l) departure factor.

=ty = (=) g = RT, (2, =2, Figare A-31

Internal Energy Changes of Real Gases
i, =1, = h, —h, — (B, — B,
et 2 (57— An) The internal energy
= (hz —h1) - R, (Zsz —Zlm change of a real gas is
wy,—t, = (b, — )~ R(Z,T, - Z,T,) given as (u = h— Pv)

Entropy Changes of Real Gases

56t mRIZ,Z) Dby
=85 =(s-5),., —R(Z,-Z,) Figure A-32 .

Example 11-11
The Ah and As of Oxygen at High Pressures

Determine the enthalpy change and the entropy change of oxygen per unit mole
as it undergoes a change of state from 220 K and 5 MPa to 300 K and 10 MPa
(a) by assuming ideal-gas behavior and

(b) by accounting for the deviation from ideal-gas behavior.

(hy = hy)igear = Masaear = D1jdea = Sl = 5 = 5 = R”m%
(a) = (8736 — 6404) kJ/kmol ‘
— 2332 kJ/kmol = (205.213 — 196.171) kJ/kmol - K — (8.314 kJ/kmol - K)In
(b) TR:L: 20K _ oD 30K
T, 143K Z,, = 0.58,Z, = 0125 B ISA8K Z,, = 048,Z, = 0.20
p _Pi_ SMPa o (" " po P 1OMPa RS T
K P, 5.08MPa kP, 508MPa

Ez - El = (Ez - El)idcu] - RuTcr(zhz - Zm)
= 2332 kJ/kmol — (8.314 kJ/kmol - K)[154.8 K(0.48 — 0.53)
= 2396 kJ/kmol

S2= 51 = (82~ S1)igen — Ru(Zy, — Z,)

3.28 kI/kmol « K — (8.314 kJ/kmol - K)(0.20 — 0.25)
= 3.70 kJ/kmol - K

32

10 MPa
5 MPa




