
Section 11.2  Infinite series 

 

 
Learning outcomes 

 

After completing this section, you will inshaAllah be able to  

 

1. know what is meant by infinite series & its convergence 

2. learn methods for knowing convergence/divergence of some basis series. 

3. apply divergence test to determine divergence of an infinite series 
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Infinite series 

 

 

 

 

 

 
 

 

 

Meaning of convergence of an infinite series 

• Given a series 
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• Define the kth partial sum of the series as  

       1 2k kS u u u= + + +   {Sum of k terms} 

• This associates a sequence with the series 
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   1 2 3, , , , ,nS S S S   {Sequence of partial sums} 

• The series 
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∑  converges to S  if the associated sequence of partial sums 

converges to S  (i.e. lim nn
S S

→∞
= ) and S  is called sum of the series.  

• The series diverges if the associated sequence of partial sums diverges. 
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An infinite series is an expression of the form 
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Most important question 

To know the convergence of infinite series 



Examples of determining convergence of infinite series (using definition) 

 

 

 

 

Examples of some important basic infinite series 

 
• Telescoping series 
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and the sum is 1S =  {See example 1 done above} 

   

• The series  1 1 1 1 1 1− + − + − +   

  

• The Geometric series 
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(i) Converges if 1r <  and has sum 
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(ii) Diverges if 1r ≥ . 
 

Exercise: Is the series 10 20 405
3 9 27

− + − +  convergent? If yes, find its sum.  

         Answer: 3S =  

• Harmonic series 

1

1 1 1 11
2 3k k k

∞

=

= + + + +∑      

 
 

311.2

See examples 1, 2, 3 done in class 

Convergent

Divergent 

Divergent 



Basic properties of infinite series 

 

• If 
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• For 0c ≠ , the series 
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In case of convergence,  
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• Deleting finite number of terms from a series has no effect on its 

convergence or divergence. 

e.g. the series 
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both converge or both diverge. 

 

 

 

 

411.2

See example 4 done in class 



Final comments before we study tests for convergence/divergence 

 
• Studying convergence of infinite series using partial sums is very impractical 

o Since finding a formula for nS  is very difficult 

• From this point forward, we will learn many efficient techniques of determining 

convergence/divergence of a series 

• The first test we will study is “Divergence test” which can be tried on any 

series.  

 

Divergence test 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of 11.2 
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a. If lim 0nn
a

→∞
≠  then the series n

n a

a
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=
∑  diverges 

b. If lim 0nn
a

→∞
=  then the series n

n a

a
∞

=
∑  may converge or diverge and we need 

to check by some other test. i.e. the test fails.  

See examples 5, 6, 7, 8, 9 done in class 


