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Abstract. The structure of local and global harmonic morphisms between Rie-
mannian manifolds, with totally geodesic fibres, is investigated. It is shown that
non-positive curvature of the domain obstructs the existence of global harmonic
morphisms with totally geodesic fibres and the only such maps from compact Rie-
mannian manifolds of non-positive curvature are, up to a homothety, totally ge-
odesic Riemannian submersions. Similar results are obtained for local harmonic
morphisms with totally geodesic fibres from open subsets of non-negatively curved
compact and non-compact manifolds. During the course, we prove non-existence of
submersive harmonic morphisms with totally geodesic fibres from some important
domains, for instance from compact locally symmetric spaces of non-compact type
and open subsets of symmetric spaces of compact type.

1. Introduction

Harmonic morphisms are maps between Riemannian manifolds which preserve

germs of harmonic functions, i.e. these (locally) pull back real-valued harmonic func-

tions to real-valued harmonic functions. These are characterized as a subclass of

harmonic maps, precisely, these are harmonic maps which are horizontally (weakly)

conformal. What is special about this characterization is that it endows harmonic

morphisms with analytic as well as geometric properties. On the other hand, it puts

strong restrictions on their existence as solutions of an over-determined system of

partial differential equations. The purpose of this article is to study questions related

to the existence and structure of harmonic morphisms, with totally geodesic fibres,

from compact and non-compact Riemannian manifolds.

The Bochner technique, in its natural setting, is a method to investigate obstruc-

tions to the existence of geometric objects on positively curved compact manifolds.

The technique mainly relies on the development of a suitable Laplacian identity and

its analysis to explore restrictions on the existence of the objects under study. Fol-

lowing the usual Bochner method, the author developed a Bochner technique for

harmonic morphisms in [16] and presented restrictions on the existence of harmonic
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morphisms from positively curved compact Riemannian manifolds. This was further

extended in [17] to include some non-compact domains.

The conventional Bochner technique, though very powerful, is not a handy tool

to explore restrictions on the existence of geometric objects on negatively curved

compact domains. Until now, the investigation of general restrictions on harmonic

morphisms from compact negatively curved manifolds is limited to the following cases.

Case 1: [7] There exist no non-constant Riemannian submersions φ : Mm → Nn

(m > n) with totally geodesic fibres if M has negative sectional curvature.

Case 2: [2] Every harmonic morphism from the compact quotients of the hy-

perbolic space H3 to a Riemann surface is constant.

Case 3: [18] Any non-constant submersive harmonic morphism from a compact

Riemannian manifold Mn+1 to Nn, such that RicM(U,U) ≤ 0 for U vertical,

is totally geodesic.

Realizing that all the maps considered above are particular cases of submersive

harmonic morphisms with totally geodesic fibres, we take a unified approach and

study the restrictions on the existence of harmonic morphisms with totally geodesic

fibres and their structure, in case these exist. In order to do so, we develop a variant

of the usual Bochner technique by developing a generalized Bochner type formula

which leads to obtaining restrictions on the existence of harmonic morphisms, with

totally geodesic fibres, from negatively curved compact Riemannian manifolds. These

restrictions contain the above results as particular cases. A comparitive study of this

generalized Bochner type formula with the usual one [16, Proposition 2.1] provides

(local) non-existence results for harmonic morphisms, with totally geodesic fibres,

from non-negatively curved Riemannian manifolds. As a final consequence, we obtain

a classification of submersive harmonic morphisms, having totally geodesic fibres,

from open subsets of Rm to complete manifolds of non-positive scalar curvature.

A conventional remark: The sign convention adopted for the curvature is the one

that coincides with the classical curvature tensor i.e. for vector fields X, Y , the

curvature R of a connection ∇ is

R(X, Y ) = −∇X∇Y +∇Y∇X +∇[X,Y ].

2. Harmonic morphisms

The formal theory of harmonic morphisms between Riemannian manifolds began

with the work of Fuglede [8] and Ishihara [13].

Definition 2.1. A smooth map φ : Mm → Nn between Riemannian manifolds is

called a harmonic morphism if, for every real-valued function f which is harmonic
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on an open subset U of N with φ−1(U) non-empty, f ◦ φ is a harmonic function on

φ−1(U).

Harmonic morphisms are related to horizontally (weakly) conformal maps which

can be defined in the following manner.

For a smooth map φ : Mm → Nn, let Cφ = {x ∈ M |rankdφx < n} be its critical

set. The points of the set M \Cφ are called regular points. For each x ∈ M \Cφ, the

vertical space at x is defined by Vx = Kerdφx. The horizontal space Hx at x is given

by the orthogonal complement of Vx in TxM .

Definition 2.2. A smooth map φ : (Mm,g) → (Nn,h) is called horizontally (weakly)

conformal if dφ = 0 on Cφ and the restriction of φ to M\Cφ is a conformal submersion,

that is, for each x ∈ M \ Cφ, the differential dφx : TH
x M → Tφ(x)N is conformal and

surjective. This means that there exists a function λ : M \ Cφ → R+ such that

h(dφ(X), dφ(Y )) = λ2g(X,Y ) ∀X, Y ∈ TH
x M.

By setting λ = 0 on Cφ, we can extend λ : M → R+
0 to a continuous function on

M such that λ2 is smooth. The extended function λ : M → R+
0 is called the dilation

of the map.

Let gradHλ2 and gradVλ
2 denote the horizontal and vertical projections of gradλ2.

Definition 2.3. A smooth map φ : Mm → Nn is called horizontally homothetic if it

is a horizontally conformal submersion whose dilation is constant along the horizontal

curves i.e. gradHλ2 = 0.

Recall that a map φ : Mm → Nn is said to be harmonic if it extremizes the

associated energy integral E(φ) = 1
2

∫
Ω
‖φ∗‖2dυM for every compact domain Ω ⊂ M .

It is well-known that a map φ is harmonic if and only if its tension field vanishes.

Harmonic morphisms can be viewed as a subclass of harmonic maps in the light of

the following characterization, obtained in [8, 13].

A smooth map is a harmonic morphism if and only if it is harmonic and horizontally

(weakly) conformal.

The following result of Baird-Eells [3, Riemannian case] and Gudmundsson [11, semi-

Riemannian case] reflects a significant geometric feature of harmonic morphisms.

Theorem 2.4. Let φ : Mm → Nn be a horizontally conformal submersion with

dilation λ. If

(1) n = 2, then φ is a harmonic map if and only if it has minimal fibres.

(2) n ≥ 3, then two of the following imply the other,

(a) φ is a harmonic map
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(b) φ has minimal fibres

(c) φ is horizontally homothetic.

The notion of horizontally conformal maps is a natural generalization of Riemann-

ian submersions. The fundamental equations of Riemannian submersions were gen-

eralized for horizontally conformal submersions in [10]. We state those results which

will be needed in the proof of Bochner formula and refer to [10] for complete details.

If T and A denote the standard fundamental tensors of a horizontally conformal

submersion φ then the relation of the integrability of horizontal distribution with the

tensor A is given by the following expression.

(2.1) AXY =
1

2

{
V [X,Y ]− λ2g(X, Y )gradV

1

λ2

}
(X,Y horizontal).

Moreover, the mixed sectional curvatures of the domain satisfy the following relation.

Proposition 2.5. [10] Let φ : (Mm,g) → (Nn,h) be a horizontally conformal sub-

mersion with totally geodesic fibres. If X, Y are horizontal vectors and U , V are

vertical vectors then

g(RM(X, U)Y, V ) = g((∇UA)XY, V ) + g(AXU,AY V )(2.2)

+ λ2g(AXY, U)g(gradV
1

λ2 , V )

where λ is the dilation.

For the fundamental results and properties of harmonic morphisms, the reader is

referred to [1, 6, 8, 19] and for an updated online bibliography to [12].

3. The Bochner type formula

In this section we develop the generalized Bochner type formula, which will be the

main tool in the next section. To establish the formula, we consider a horizontally

homothetic map with totally geodesic fibres (equivalently a submersive harmonic

morphism with totally geodesic fibres) and compute the Laplacian of the dilation.

Proposition 3.1. Let φ : (Mm,g)→(Nn,h) be a non-constant horizontally homo-

thetic map with totally geodesic fibres. If λ denotes the dilation of φ then

n

2
∆λ2 = λ2

n∑
α=1

m∑
i=n+1

{
g(Aeαei, Aeαei)− g(RM(eα, ei)eα, ei)

}
(3.1)

+
n(n− 4)

4
λ6g(gradV

1

λ2 ,gradV
1

λ2 )

where (eα)n
α=1 and (ei)

m
i=n+1 are local orthonormal frames for the horizontal and ver-

tical distributions respectively.
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Proof. Taking the Laplacian on functions as

∆f = −div(gradf),

we have, for the dilation λ of φ

1

λ2 ∆λ2 = −λ2∆
1

λ2 + 2g(gradVλ
2,gradV

1

λ2 )

= −λ2∆
1

λ2 − 2λ4g(gradV
1

λ2 ,gradV
1

λ2 )

= λ2
n∑

α=1

g(∇eαgradV
1

λ2 , eα) + λ2
m∑

i=n+1

g(∇ei
gradV

1

λ2 , ei)

−2λ4g(gradV
1

λ2 ,gradV
1

λ2 ).

Since

g(∇eαgradV
1

λ2 , eα) = −g(gradV
1

λ2 , Aeαeα),

we have

(3.2)
1

λ2 ∆λ2 =
(n− 4)

2
λ4g(gradV

1

λ2 ,gradV
1

λ2 ) + λ2
m∑

i=n+1

g(∇ei
gradV

1

λ2 , ei).

Now a straight forward computation using Equation 2.1 and the easily seen relation

g((∇ei
A)eαeα, ei) = g(∇ei

(Aeαeα), ei) implies that

(3.3)

λ2
m∑

i=n+1

g(∇ei
gradV

1

λ2 , ei) = −2
m∑

i=n+1

g((∇ei
A)eαeα, ei)−2λ2

m∑
i=n+1

g(Aeαeα, ei)g(gradV
1

λ2 , ei).

Using Equation 3.3 and Equation 2.2 we can write Equation 3.2 as

1

2
∆λ2 =

(n− 4)

2
λ6g(gradV

1

λ2 ,gradV
1

λ2 ) + λ2
m∑

i=n+1

g(Aeαei, Aeαei)

−λ2
m∑

i=n+1

g(RM(eα, ei)eα, ei).(3.4)

Since the above identity holds for each eα for α = 1, . . . , n, therefore, summing over

α completes the proof. �

The above formula will naturally be useful to obtain consequences for maps from

compact Riemannian manifolds. For the general domains, a comparison of this

Bochner type formula with the Weitzenböck formula of [16, Proposition 2.1] yields

the following identity.

Proposition 3.2. If the Riemannian manifolds Mm, Nn admit a submersive har-

monic morphism φ : Mm → Nn having totally geodesic fibres then the following
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identity is satisfied.

−‖∇dφ‖2 + λ4ScalN − λ2
n∑

α=1

n∑
β=1

g(RM(eα, eβ)eα, eβ)(3.5)

= λ2
n∑

α=1

m∑
i=n+1

g(Aeαei, Aeαei) +
n(n− 4)

2
λ6g(gradV

1

λ2 ,gradV
1

λ2 )

where λ is the dilation of φ and (eα)n
α=1, (ei)

m
i=n+1 are local orthonormal frames for

the horizontal, vertical distributions respectively.

Proof. The Weitzenböck formula of [16, Proposition 2.1] says that the dilation λ of a

harmonic morphism satisfies

n

2
∆λ2 = −‖∇dφ‖2 + λ4ScalN − λ2

n∑
α=1

RicM(eα, eα).

Writing

n∑
α=1

RicM(eα, eα) =
n∑

α=1

n∑
β=1

g(RM(eα, eβ)eα, eβ) +
n∑

α=1

m∑
i=n+1

g(RM(eα, ei)eα, ei)

and comparing above Weitzenböck formula with Equation 3.1 gives the required iden-

tity. �

4. Applications to harmonic morphisms with totally geodesic fibres

This section is devoted to analysis of the structure of globally as well as locally

defined harmonic morphisms with totally geodesic fibres. Throughout the section we

assume the following range of indices:

1 ≤ α, β ≤ n; n + 1 ≤ i, j ≤ m

Moreover, (eα)n
α=1, (ei)

m
i=n+1 will denote local orthonormal frames for the horizon-

tal, vertical distributions, respectively, induced by a horizontally conformal map

φ : Mm → Nn.

4.1. Global harmonic morphisms with totally geodesic fibres. The main re-

sult, obtained by applying Proposition 3.1, is that the negative curvature of compact

domains obstructs the existence of harmonic morphisms with totally geodesic fibres,

thus making the class of such harmonic morphisms very restricted on domains of non-

positive curvature. Combining the results of this section with Theorem 2.5 of [16]

gives a much clearer picture of the structure of harmonic morphisms from compact

manifolds, having totally geodesic fibres (cf. Corollary 4.5).

Firstly we consider harmonic morphisms of co-dimension> 1.
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Theorem 4.1. Let φ : Mm → Nn (n ≥ 4, m ≥ n + 2) be a non-constant submersive

harmonic morphism from a compact Riemannian manifold such that the sectional

curvature KM(eα ∧ ei) ≤ 0 ∀ α, i.

(1) If φ has totally geodesic fibres then it has constant dilation and integrable hor-

izontal distribution i.e. up to a homothety it is a totally geodesic Riemannian

submersion.

(2) If KM(eα ∧ ei) < 0 at some point for at least one pair of α, i then there are

no non-constant submersive harmonic morphisms with totally geodesic fibres

from M to N .

Proof. ¿From Stokes’ theorem and Proposition 3.1

0 =

∫
M

[
λ2

n∑
α=1

m∑
i=n+1

{
g(Aeαei, Aeαei)− g(RM(eα, ei)eα, ei)

}]
υM

+
n(n− 4)

4

∫
M

λ6g(gradV
1

λ2 ,gradV
1

λ2 )υM .

Now the hypothesis and a standard Bochner type argument forces each term on the

right hand side of Equation 3.1 to vanish, which completes the proof. �

For harmonic morphisms with one dimensional fibres, the condition on the sectional

curvature can be replaced by Ricci curvature to obtain better consequences.

Corollary 4.2. Let φ : Mn+1 → Nn (n ≥ 4) be a non-constant harmonic morphism

between compact Riemannian manifolds. Let RicM|V denote the Ricci curvature of

M restricted to the fibres. i.e.

RicM|V = RicM(en+1, en+1)

for a vertical unit vector en+1.

(1) If RicM|V ≤ 0 then, up to a homothety, φ is a totally geodesic Riemannian

submersion.

(2) If RicM|V < 0 at some point then φ does not exist.

(3) In particular, if M is Ricci-flat then, up to a homothety, φ is a totally geodesic

Riemannian submersion, and the fibres, the horizontal submanifolds and N are

all Ricci-flat.

Proof. First notice that φ : Mn+1 → Nn (n ≥ 4) is submersive, as shown in [2].

Moreover, the fibres are automatically totally geodesic. Now Parts 1,2 are similar to

the proof of Theorem 4.1, since

RicM(en+1, en+1) =
n∑

α=1

g(RM(eα, en+1)eα, en+1).
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For Part 3 we see that φ, being totally geodesic Riemannian submersion, makes the

horizontal and vertical foliations Riemannian with totally geodesic leaves. Hence, the

Ricci curvatures of the fibres, the horizontal submanifolds and the target manifold

vanish because of Ricci-flatness of M . �

The reader is referred to [18, Corollary 3.6] where Part 1 of the above result is

proved by a different approach.

Next, we discuss examples satisfying the hypothesis of Theorem 4.1.

Corollary 4.3. Let Mn+1 be a compact Riemannian manifold. Then there exists

a metric g on M such that there are no non-constant harmonic morphisms φ :

(Mn+1,g) → Nn for (n ≥ 4).

Proof. Due to Lohkamp [15, Corollary 5.2], any manifold of dimension≥ 3 carries a

Riemannian metric of negative Ricci curvature and hence, from above we have the

non-existence result. �

By considering compact locally symmetric spaces of non-compact type, we get a

number of examples where Theorem 4.1 can be applied to obtain restrictions or non-

existence results for harmonic morphisms with totally geodesic fibres.

Corollary 4.4.

(1) There are no non-constant submersive harmonic morphisms with totally ge-

odesic fibres from compact locally symmetric spaces Mm (m > n) of non-

compact type and rank 1 to any Riemannian manifold Nn (n ≥ 4).

(2) Every non-constant submersive harmonic morphism with totally geodesic fi-

bres, from a compact irreducible locally symmetric space Mm (m > n) of

non-compact type and rank≥ 2 to any Riemannian manifold Nn (n ≥ 4) is,

up to a homothety, a totally geodesic Riemannian submersion.

Proof.

(1) Follows from the fact that all compact locally symmetric spaces Mm m ≥ 3

of non-compact type and rank 1 have negative sectional curvature.

(2) Since every compact irreducible locally symmetric space Mm of non-compact

type and rank≥ 2 has the sectional curvature K ≤ 0 (but K 6< 0), the proof

follows from above.

�

We refer the reader to [11] where, in contrast to above result, Gudmundsson has

given an affirmative answer to the global existence question for harmonic morphisms,
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from irreducible symmetric spaces of non-compact type and rank 1, with values in

complex plane.

If we focus only on manifolds whose sectional curvatures do not change sign i.e ei-

ther K ≤ 0 everywhere or K ≥ 0 everywhere. Then combining Theorem 4.1 with [16,

Theorem 2.5] we have the following picture of the structure of submersive harmonic

morphisms φ with totally geodesic fibres from compact Riemannian manifolds Mm

to compact Riemannian manifolds Nn such that n ≥ 4 and m > n and the sectional

curvatures of M , N do no change sign.

Corollary 4.5. Let Mm, Nn be compact Riemannian manifolds with n ≥ 4 and

m > n.

(1) If KM ≤ 0 and KM < 0 at some point then there are no non-constant sub-

mersive harmonic morphisms with totally geodesic fibres.

(2) If KM ≡ 0 then every submersive harmonic morphism with totally geodesic

fibres is, up to a homothety, a totally geodesic Riemannian submersion, and

the fibres, the horizontal submanifolds and the target manifold N are all flat.

(3) If KM ≥ 0 and KM 6≡ 0 then only possible non-constant submersive harmonic

morphisms φ with totally geodesic fibres are when ScalN ≥ 0 and ScalN 6≡
0. In which case, either the horizontal distribution can be integrable or the

dilation can be constant but both cannot occur.

4.2. Local harmonic morphisms with totally geodesic fibres. The obstruction

theory for local harmonic morphisms with totally geodesic fibres has an interesting

contrast to the global case in the sense that instead of negative curvature it is the

positive curvature which imposes restrictions on the existence of local harmonic mor-

phisms with totally geodesic fibres.

For a horizontally conformal submersion φ : (Mm,g) → Nn, let ScalMH be the

curvature given by

ScalMH =
n∑

α,β=1

g(RM(eα, eβ)eα, eβ)

for a local orthonormal frame (eα)n
α=1 of the horizontal distribution. When the hori-

zontal distribution is integrable and totally geodesic ScalMH coincides with the scalar

curvature ScalH of the horizontal submanifolds.

Theorem 4.6. Let U be a connected open subset of a Riemannian manifold M, Nn

(n ≥ 4) be a Riemannian manifold with ScalN ≤ 0 and φ : U → Nn be a non-

constant submersive harmonic morphism with totally geodesic fibres. If ScalMH ≥ 0

then, up to a homothety, φ is a Riemannian submersion with totally geodesic fibres

and integrable horizontal distribution. Furthermore,
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(1) The scalar curvature of the horizontal submanifolds is zero.

(2) If ScalN < 0 at some point, then such φ cannot exist.

Proof. The hypothesis combined with Proposition 3.2 makes each term in Equa-

tion 3.5 vanish, which makes the dilation constant and the tensor A ≡ 0. The rest is

immediate, since the horizontal foliation becomes Riemannian with totally geodesic

leaves. �

Theorem 4.6 enables us to find local analogue of the results of [16] where restrictions

on the existence of global harmonic morphisms from Riemannian symmetric spaces

of compact type were obtained.

Corollary 4.7. Let Mm be a irreducible Riemannian symmetric space of compact

type, U a connected open subset of M and Nn (n ≥ 4) any Riemannian manifold.

(1) If ScalN ≤ 0 but ScalN 6≡ 0 then there exists no non-constant submersive

harmonic morphism φ : U → Nn with totally geodesic fibres.

(2) In particular, there exists a metric h on Nn such that there are no non-

constant submersive harmonic morphisms φ : U → (Nn,h) having totally

geodesic fibres.

(3) If ScalN ≡ 0 then every non-constant submersive harmonic morphism φ :

U → Nn with totally geodesic fibres, is up to a homothety, a totally geodesic

Riemannian submersion.

Proof.

(1) The proof follows from the fact that irreducible Riemannian symmetric space

of compact type have non-negative sectional curvature.

(2) As n > 3, there exists a Riemannian metric of negative Ricci curvature on Nn

by [15].

(3) Immediate from above.

�

A classification of local and global harmonic morphisms from 3-dimensional simply-

connected space-forms was found in [4, 5] which was generalized to higher dimensions

in [14] for global harmonic morphisms from Rm having totally geodesic fibres. For

local case, a classification of harmonic morphisms, with totally geodesic fibres and in-

tegrable horizontal distribution, between higher-dimensional simply-connected space-

forms was obtained in [9]. Here, we extend the classification of [14] to local harmonic

morphisms with totally geodesic fibres.
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Corollary 4.8. Let U be a connected open subset of Rm and φ : U → Nn (n ≥ 4) be

a non-constant submersive harmonic morphism with totally geodesic fibres.

(1) If N is complete, simply-connected with ScalN ≤ 0 then φ is an orthogonal

projection followed by a homothety.

(2) If ScalN > 0 then φ has a non-constant dilation.

Proof.

(1) From Theorem 4.6, up to a homothety, φ is a Riemannian submersion with

totally geodesic fibres and integrable horizontal distribution. Therefore, the

horizontal submanifolds are totally geodesic and flat, hence KN ≡ 0, which

completes the proof.

(2) If φ has constant dilation then the horizontal distribution is integrable from

Equation 3.1. This makes φ a totally geodesic map and then Equation 3.5

implies that ScalN ≡ 0; a contradiction.

�
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