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Abstract. Weitzenböck type identities for harmonic morphisms of warped
product type are developed which lead to some necessary conditions for their
existence. These necessary conditions are further studied to obtain many non-
existence results for harmonic morphisms of warped product type from Ein-
stein manifolds.
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1. Introduction. Harmonic morphisms are maps between Riemannian manifolds
which preserve germs of harmonic functions, i.e. these (locally) pull back real-
valued harmonic functions to real-valued harmonic functions. Harmonic morphisms
are characterized as harmonic maps which are horizontally (weakly) conformal. On
the one hand this characterization endows harmonic morphisms with analytic as
well as geometric properties. On the other hand, it puts strong restrictions on their
existence as solutions of an over-determined system of partial differential equations.
This makes the investigation of questions related to their existence, classification
and construction of prime interest. Many interesting results in this regard can be
found in [1, 2, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26].

A class of harmonic morphisms directly related to a geometric structure of
physical interest is the class of harmonic morphisms of warped product type.
Such maps have been investigated in [11, 13, 25, 26, 27]. In [25, 26], these have
been particularly studied in the context of Einstein manifolds where the con-
structions involving harmonic morphisms of warped product type are discussed.
However, the results have not led to any non-trivial example of harmonic mor-
phisms of warped product type from compact Einstein manifolds; where by a trivial
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harmonic morphism of warped product type we mean a map which is locally the
projection of a Riemannian product. The only known result in this context, proved
in [9, Proposition 12.7.1], is for one dimensional fibres.

Let φ : (Mn+1, g)→(Nn, h)(n ≥ 3) be a harmonic morphism of warped product
type from a compact manifold. If M is Einstein then, up to a homothety, φ is
locally the projection of a Riemannian product.

Motivated by the above result and the fact that there are natural obstructions
to the existence of harmonic morphisms from compact domains, the purpose of
this article is to investigate constraints on the existence of harmonic morphisms
of warped product type (with compact fibres of any dimension) from Einstein
manifolds. A Bochner type argument is developed, in Section 3, which leads to
general restrictions on the existence of harmonic morphisms of warped product
type. These restrictions are applied, in Section 4, to obtain several non-existence
results for harmonic morphisms of warped product type from Einstein manifolds.

Remark 1.1. In this article we are interested in restrictions on harmonic mor-
phisms of warped product type from Riemannian manifolds, but the technique
can easily be adapted to obtain restrictions on harmonic morphisms of warped
product type, with compact Riemannian fibres, from semi-Riemannian manifolds.

2. Harmonic morphisms of warped product type. The formal theory of harmonic
morphisms between Riemannian manifolds began with the work of Fuglede [12]
and Ishihara [19].

Definition 2.1. A map φ : Mm → Nn is called a harmonic morphism if for
every open subset U of N (with φ−1(U) non-empty) and every harmonic func-
tion f : U → R, the composition f ◦ φ : φ−1(U) → R is harmonic.

Harmonic morphisms are related to horizontally (weakly) conformal maps which
can be defined in the following manner.

For a smooth map φ : Mm → Nn, let Cφ = {x ∈ M |rank dφx < n} be
its critical set. The points of the set M \ Cφ are called regular points. For each
x ∈ M \ Cφ, the vertical space at x is defined by Vx = Ker dφx. The horizontal
space Hx at x is given by the orthogonal complement of Vx in TxM .

Definition 2.2. A smooth map φ : (Mm,g) → (Nn,h) is called horizontally
(weakly) conformal if dφ = 0 on Cφ and the restriction of φ to M \Cφ is a confor-
mal submersion, that is, for each x ∈ M \Cφ, the differential dφx : Hx → Tφ(x)N is
conformal and surjective. This means that there exists a function λ : M \Cφ → R

+

such that

h(dφ(X), dφ(Y )) = λ2g(X,Y ) ∀X,Y ∈ Hx and x ∈ M \ Cφ.

By setting λ = 0 on Cφ, we can extend λ : M → R
+
0 to a continuous function

on M such that λ2 is smooth. The extended function λ : M → R
+
0 is called the

dilation of the map.
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Let gradHλ
2 and gradVλ

2 denote the horizontal and vertical projections of
gradλ2.

Definition 2.3. A smooth map φ : Mm → Nn is called horizontally homothetic
if it is a horizontally conformal submersion whose dilation is constant along the
horizontal curves i.e. gradHλ

2 = 0.

Recall that a map φ : Mm → Nn is said to be harmonic if it extremizes
the associated energy integral E(φ) = 1

2

∫
Ω ‖φ∗‖2dυM for every compact domain

Ω ⊂ M . It is well-known that a map φ is harmonic if and only if its tension field
τ(φ) = trace∇dφ vanishes.

Harmonic morphisms can be viewed as a subclass of harmonic maps in the light
of the following characterization, obtained in [12, 19].
A smooth map is a harmonic morphism if and only if it is harmonic and horizon-
tally (weakly) conformal.

The following result of Baird-Eells [3, Riemannian case] and Gudmundsson
[16, semi-Riemannian case] reflects a significant geometric feature of harmonic
morphisms.

Theorem 2.4. Let φ : Mm → Nn be a horizontally conformal submersion with
dilation λ. If

1. n = 2, then φ is a harmonic map if and only if it has minimal fibres.
2. n ≥ 3, then two of the following imply the other,

(a) φ is a harmonic map
(b) φ has minimal fibres
(c) φ is horizontally homothetic.

Here we deal with a class of harmonic morphisms, closely related to a physically
significant geometric structure, namely harmonic morphisms of warped product
type which are defined as follows.

Definition 2.5. [9, 27] A map is called a harmonic morphism of warped product
type if it is a non-constant horizontally homothetic map with totally geodesic fibres
and integrable horizontal distribution.

Note that, due to Theorem 2.4, these maps are harmonic morphisms and are
related to the usual warped product structures through following characterization.

Proposition 2.6. [9, 27]

1. The projection F ×f2 N → N of a warped product onto its second factor
is a horizontally homothetic map with totally geodesic fibres and integrable
horizontal distribution.

2. Conversely, any horizontally homothetic map (M, g) → (N,h) with totally
geodesic fibres and integrable horizontal distribution is locally the projection
of a warped product.
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The reader is referred to [2, 9, 12, 28] for fundamental results and properties of
harmonic morphisms and to [11, 13, 25, 26, 27] particularly for constructions and
classifications involving harmonic morphisms of warped product type.

3. Restrictions on harmonic morphisms of warped product type. The Weitzenböck
type identities established in the following Theorem are the main tool for drawing
results about the non-existence of certain harmonic morphisms of warped product
type.

Theorem 3.1. Let φ : (Mm, g
M

)→(Nn, g
N

) be a non-constant harmonic morphism
of warped product type between Riemannian manifolds. If λ denotes the dilation of
φ then

(i) −nλ∆
V 1

λ =
∑m

r=n+1RicM(er, er) − ScalV

(ii) RicM(X,Y ) = RicN(dφ ·X, dφ · Y ) + g
M

(X,Y )∆
M

lnλ

where X, Y are horizontal vectors, (er)
m
r=n+1 is a local orthonormal frame for

vertical distribution, ScalV is the scalar curvature of fibres of φ and ∆
V

is the
Laplacian on fibres defined as ∆

V
f = ∆

F

(f |F ) for the fibre F = φ−1(φ(x)) with ∆
F

denoting the Laplacian on F .

Proof. We start with a curvature identity for submersive harmonic morphisms,
proved in [9, Theorem 11.5.1(i)], which relates the Ricci curvatures of M and
fibres of φ.

RicM(U, V ) = RicV(U, V ) +
n∑

a=1

〈(∇ea
B∗)Uea, V 〉 + 2(n− 1)dlnλ(BUV )

+n∇dlnλ(U, V ) − nU(lnλ)V (lnλ)

+
1
4

n∑
a,b=1

〈U, I(ea, eb)〉〈V, I(ea, eb)〉(3.1)

where U , V are vertical vectors and (ea)n
a=1 is a local orthonormal basis for the

horizontal distribution. Since the fibres of φ are totally geodesic, the horizontal
distribution is integrable and φ is horizontally homothetic we have

dlnλ(BUV ) = 0,(3.2)

n∑
a,b=1

〈U, I(ea, eb)〉〈V, I(ea, eb)〉 = 0,(3.3)

and
m∑

r=n+1

〈(∇ea
B∗)er

ea, er〉 = 0.(3.4)
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Taking trace over vertical vectors in Equation 3.1 and using Equations 3.2, 3.3,
3.4 gives

m∑
r=n+1

RicM(er, er) = ScalV + n

m∑
r=n+1

∇dlnλ(er, er) − n

m∑
r=n+1

[er(lnλ)]2 .(3.5)

Because of totally geodesic fibres we can write

∇dlnλ(er, er) = er (er(lnλ)) − (∇M
er
er

)
(lnλ) = er (er(lnλ)) − (∇V

er
er

)
(lnλ),

therefore, Equation 3.5 implies
m∑

r=n+1

RicM(er, er) = ScalV + n∆
V
lnλ− n

m∑
r=n+1

[er(lnλ)]2 .

Formula (i) now follows by using the relation

∆
V
lnλ−

m∑
r=n+1

[er(lnλ)]2 = −λ∆
V 1
λ
,

which can be established from

er (er (lnλ)) = [er (lnλ)]2 − λer

(
er

(
1
λ

))
.

Formula (ii) follows directly from [9, Theorem 11.5.1 (iii)] and hypothesis. �

Lemma 3.2. A harmonic morphism of warped product type is totally geodesic iff it
has constant dilation.

As an immediate consequence of Theorem 3.1, we have

Corollary 3.3. Let φ : Mm→Nn be a (non-constant) harmonic morphism of warped
product type with compact fibres. If

1. either RicM ≥ 0 and the fibres have scalar curvature ScalV ≤ 0
2. or RicM ≤ 0 and the fibres have scalar curvature ScalV ≥ 0

then ScalV ≡ 0 and, up to a homothety, φ is a totally geodesic Riemannian sub-
mersion.

Proof. λ is constant from Theorem 3.1(i), hypothesis and compactness of fibres.
Rest follows by using Theorem 3.1(i) and Lemma 3.2. �

On rewriting the Weitzenböck type identities, we obtain applications involving
only the curvature of domain manifolds.

Corollary 3.4. Every (non-constant) harmonic morphism φ : Mm→Nn of warped
product type, with compact fibres, from a Riemannian manifold of non-negative
sectional curvature or non-positive sectional curvature is, up to a homothety, a
totally geodesic Riemannian submersion.
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Proof. Since the fibres of φ are totally geodesic, the Riemannian curvature tensor
RV of fibres agrees with the Riemannian curvature tensor RM of M on vertical
vectors. Hence

m∑
r=n+1

RicM(er, er) − ScalV =
m∑

r=n+1

n∑
a=1

g
M

(RM (ea, er)ea, er)

where ScalV is the scalar curvature of fibres, (er)
n
a=1 and (er)

m
r=n+1 are local

orthonormal frames for horizontal and vertical distributions respectively.

Using above in Theorem 3.1(i) gives

−nλ∆
V 1
λ

=
m∑

r=n+1

n∑
a=1

g
M

(RM (ea, er)ea, er).

The proof then follows from the hypothesis and compactness of fibres. �

4. Applications to harmonic morphisms of warped product type from Einstein
manifolds. By using the Einstein metric in Theorem 3.1 we have the following
Weitzenböck type identity for harmonic morphisms of warped product type from
Einstein manifolds.

Proposition 4.1. Let φ : Mm→Nn be a (non-constant) harmonic morphism of
warped product type with dilation λ. If M is Einstein with Einstein constant
cM then

−nλ∆
V 1
λ

= (m− n)cM − ScalV(4.1)

and

ScalN

n
=
cM − ∆

M

lnλ
λ2 .

For n ≥ 3, N is Einstein with Einstein constant cN satisfying

cN =
cM − ∆

M

lnλ
λ2 .(4.2)

In order to obtain applications we first find some necessary conditions for the
existence of non-trivial harmonic morphisms of warped product type from Einstein
manifolds.

Theorem 4.2. Let φ : Mm→Nn be a harmonic morphism of warped product type
with non-constant dilation λ. If M is Einstein with Einstein constant cM and the
fibres of φ are compact then

(a) inf(ScalV) < (m− n)cM < sup(ScalV),
(b) the total scalar curvature SV =

∫
ScalVυF of fibres satisfies SV > 0.

Furthermore if M is compact then, for n ≥ 3,

(c) cM > 0 and hence the Einstein constant cN of N satisfies cN > 0,
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(d) λ2 is neither bounded below nor bounded above by cM

cN .

Proof. (a) ScalV ≥ (m − n)cM or ScalV ≤ (m − n)cM makes 1
λ a subharmonic

or superharmonic function. Since fibres are compact λ must be constant; a
contradiction.

(b) Integrating Equation 4.1 and using Green’s formula gives

SV =
∫

ScalVυF = n

∫
λ2

∥∥∥∥grad
1
λ

∥∥∥∥
2

υF + (m− n)cMVol(F ) > 0

where Vol(F ) is the volume of fibre.
(c) Assume cM ≤ 0. Equation 4.2 gives

cN

Vol(M)

∫
λ2υM = cM ,(4.3)

hence cN ≤ 0.
Since M is compact, 1

λ assumes its minimum on M . Let p0 be minimum
point of 1

λ on M then

1
λ(p0)

> 0, grad
1
λ

(p0) = 0, and ∆
M 1
λ

(p0) ≥ 0.

On the other hand, using

λ∆
M 1
λ

= λ2
∥∥∥∥grad

1
λ

∥∥∥∥
2

− ∆
M

lnλ

we have

λ(p0)∆
M 1
λ

(p0) = −∆
M

lnλ(p0)

= cNλ2(p0) − cM {From Equation 4.2}
=

cN

Vol(M)

∫ (
λ2(p0) − λ2) υM {Using Equation 4.3}

≤ 0.

Hence 1
λ must be constant, which contradicts the hypothesis.

(d) If λ2 ≤ cM

cN or λ2 ≥ cM

cN then from Equation 4.2, lnλ is a subharmonic or
superharmonic function. Since fibres are compact, this gives a contradiction.

�

The above result obviously eliminates, for instance, the possibility of (non-trivial)
harmonic morphisms of warped product type from Einstein manifolds to have
compact fibres which

• are Einstein (or have constant scalar curvature),
• compact locally symmetric spaces of non-compact type (or spaces of negative

scalar curvature)
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Theorem 4.3. Let (Mm, g) (m > n ≥ 3) be a compact manifold conformally equiv-
alent to a manifold with non-positive scalar curvature. If M is Einstein then
there are no harmonic morphisms φ : Mm→Nn of warped product type, with non-
constant dilation.

Proof. Let g1 be the metric conformal to g and set g1 = ψ
4

m−2 g for a function
ψ > 0 on M . If Scalg

1
, ScalM denote the scalar curvatures of g1, g, respectively,

then by standard computations cf. [10, Page 59]

ψ
m+2
m−2 Scalg

1
= 4

m− 1
m− 2

∆ψ + ScalMψ.

Therefore, by hypothesis we must have

4
m− 1
m− 2

∆ψ + ScalMψ ≤ 0

or mcM
∫

M

ψυM ≤ 0

where cM is the Einstein constant of M . This contradicts Theorem 4.2 if there
exists a harmonic morphism φ : Mm→Nn of warped product type, with non-
constant dilation. �

Proposition 4.1 and Theorem 4.2 yield the following non-existence result for
harmonic morphisms of warped product type to surfaces.

Corollary 4.4. There are no harmonic morphisms of warped product type, with
non-constant dilation, from a compact Einstein manifold to a Riemann surface
N2 of genus g ≥ 1.

Proof. The notion of harmonic morphisms to a Riemann surface does not depend
on any specific Hermitian metric on N2. The proof then follows from above and
the fact that every compact Riemann surface of genus g ≥ 2 and genus g = 1 has
a Hermitian metric of constant negative and zero curvature, respectively. �

In case of symmetric domains we have

Corollary 4.5. There exist no harmonic morphisms φ : Mm→Nn of warped product
type, with non-constant dilation, in each of the following case:

(i) M is an irreducible symmetric space of compact type,
(ii) M is a compact locally symmetric space of non-compact type,
(iii) M is an irreducible symmetric space of non-compact type and φ has compact

fibres.

Proof. Follows from Corollary 3.4 by using the facts about the curvatures of
symmetric spaces of compact and non-compact type. �
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A nonexistence result for harmonic morphisms of warped product type, with
1-dimensional fibres, from compact manifolds is obtained in [9, Proposition 12.7.1].
Corollary 4.6 relaxes the hypothesis by replacing the compactness of domain with
the compactness of fibres.

Corollary 4.6. Let Mn+1 be an Einstein manifold.Then there are no harmonic
morphisms φ : Mn+1→Nn of warped product type, with non-constant dilation and
compact fibres.

Proof. Follows directly from Theorem 4.2(a). �
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