A BOCHNER TECHNIQUE FOR HARMONIC
MORPHISMS

M. T. MUSTAFA

ABSTRACT. We establish a Weitzenbock formula for harmonic mor-
phisms between Riemannian manifolds and show that under suit-
able curvature conditions, such a map is totally geodesic. As an ap-
plication of the Weitzenbock formula we obtain some non-existence
results of a global nature for harmonic morphisms and totally ge-
odesic horizontally conformal maps between compact Riemannian
manifolds. In particular, it is shown that the only harmonic mor-
phisms from a Riemannian symmetric space of compact type to a

compact Riemann surface of genus > 1 are the constant maps.

1. INTRODUCTION

A smooth map ¢: M— N between Riemannian manifolds is called a
harmonic morphism if it preserves germs of harmonic functions, i.e., if f
is a real valued harmonic function on an open set V' C N then the com-
position f o ¢ is harmonic on ¢~'(V) C M. Due to a characterization
obtained by B. Fuglede [16] and T. Ishihara [22], harmonic morphisms
are precisely the harmonic maps which are horizontally (weakly) con-
formal.

The purpose of this paper is to develop a Bochner technique for

harmonic morphisms, extending the work of Eells-Sampson [15], to
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study harmonic morphisms between suitably curved Riemannian man-
ifolds, for instance, to investigate harmonic morphisms from compact
Lie groups or symmetric spaces of compact type.

We divide this section in two parts giving an introduction to har-
monic morphisms and explaining the Bochner technique for harmonic

maps.
Notation. Throughout this paper we adopt the following conventions.

By (M™, (-, >M) we shall mean a smooth connected, oriented, complete
Riemannian manifold, without boundary, of dimension m endowed with
a Riemannian metric (-, ->M. We also suppose that all the maps are
smooth. We denote by VM and RM, respectively, the connection on

the manifold M and the curvature of this connection where
YY) =~V SV 4,

For a map ¢: M— N we shall denote by V the connection on the bundle
T*M @ ¢ 'T'N. By A we shall mean the Hodge-deRham Laplacian
defined as A = dd* + d*d, so that the Laplacian on a function f defined

on M is given as

Af = —traceVMdf,

i.e. the negative of the usual Laplacian on functions. Generally, we
shall be following the notations of [12] for differential operators on

manifolds.

1.1. Harmonic morphisms. Recall that a map ¢: M™—N" is har-
monic if and only if its tension field 7(¢) = traceVd¢ vanishes. The
reader is referred to [11], [12] and [13] for a detailed account of harmonic

maps.

Definition 1.1. A map ¢: M™—N" between Riemannian manifolds

is called a harmonic morphismif fo@ is a real valued harmonic function
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on ¢ (V) C M for every real valued function f which is harmonic on

an open subset V of N with ¢~"(V) non-empty.

It can be easily seen that the composition of harmonic morphisms
is a harmonic morphism. Let C, = {x € M | rank d¢, = 0} be the
critical set of ¢: M™—N". It is shown in [16] that, for a non-constant
map, the set M\ Cy is open and dense in M. For each x € (M \Cy), the
vertical space TV M at z is defined by 7Y M = Kerd¢,. The horizontal
space THM at z is given by the orthogonal complement of TV M in
T, M so that T,M =TV M @& THM.

Definition 1.2. A map ¢: (M™, (-, -)M)—>(Nm, (-, )N) is called hori-
zontally (weakly) conformal if for each @ € (M™ \ Cy), the restriction of
do, to THM (i.e. doy : THM — Ty, N) is conformal and surjective,
that is, there exists a function A : M\ Cy — R* such that

(dd(X),dp(Y))Y = XXX, VM VXY e T M.

By setting A = 0 on Cy, we can extend A to M such that
M M™ — R is a smooth function; X is called the dilation of ¢.
The following curvature, defined for a horizontally (weakly) confor-

mal map, plays an important role in the subsequent sections.

Definition 1.3. Let ¢: (M™, (-, ->M)—>(N”, (-, >N) be a horizontally
(weakly) conformal map. We define ScalM|H by

ScalM|H =0 ata critical point,

and .
ScalM|H = ZRicciM(es, es) at a regular point x
s=1
are orthonormal bases of Tf M and T;/ M re-

is an orthonormal basis of T, M = T;/M fen

where (e,)_,, (es);n:n+1

spectively, so that (e)/_
THM.

1
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Harmonic morphisms can be characterized as follows [16], [22]:

Theorem 1.4. A map ¢: (M™, (-, -)M)—>(Nm, (-, )N) is a harmonic
morphism if and only if it is a harmonic and horizontally conformal

map.

In the study of harmonic morphisms the significance of dimensions

of the manifolds under consideration is clear from the following.

Proposition 1.5. [16] Let M™, N be Riemannian manifolds.

1. If m < n then every harmonic morphism ¢: M™—N" is constant.

2. If m = n =2, the harmonic morphisms ¢: M™—N" are just the
weakly conformal maps.

3. If m = n > 3, then the harmonic morphisms ¢: M™—N" are

conformal mappings with constant dilation.

Unless otherwise stated we shall assume that m > n for a harmonic
morphism ¢: M™—N". We refer the reader to [16], [2], [33] for an
introduction and basic properties of harmonic morphisms. Many ex-
amples of harmonic morphisms can be found in [2], [4], [5], [6], [7], [17],
[18], [19], [20], [21] and [34].

1.2. Bochner technique for harmonic maps. The Bochner tech-
nique is a method devised by S. Bochner in [9], to obtain vanishing the-
orems under appropriate curvature conditions on compact Riemannian

manifolds. This can be best described by the following steps.

o Develop an identity relating Laplacians on sections of a vector
bundle. Such an identity naturally involves the curvature of the
bundle and is commonly known as a Weitzenbock formula.

e Impose suitable curvature restrictions to apply a maximum prin-

ciple, in order to obtain the required vanishing results.

In this section we shall focus our attention on the applications of the
Bochner technique in the theory of harmonic maps. A good account
of applications of the Bochner technique in differential geometry, in

general, may be found in [35].
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The first employment of this technique to study harmonic maps was
in the well-known paper of J. Eells and J. H. Sampson [15], where the

following Weitzenbock formula was obtained.

Proposition 1.6 (WF for harmonic maps). Let M™, N be Rie-
mannian manifolds. If ¢ : (M™, <-,->M)—>(N”, <-,->N) is harmonic,
then

(1.1) —traceV?dg = Y RN(d¢-e,, dg)d¢-e, — dp-Ricei
s=1

and

(1.2)

1

SAlldell* == [[Vdel|” +

zm: (RN(dgre,, dore)ddre,, dore)™ — i(dgﬁ-RicciMes, dgre Y

s,t=1 s=1

where ()l is an orthonormal basis at the point under consideration
on M.

As a consequence it was shown that

Theorem 1.7. Let M™ be a compact Riemannian manifold. Let
o : (Mm,<-,->M)—>(N”,<-,->N) be harmonic and suppose RiceiM>0
and Riem™N<0. Then

1. @ is totally geodesic.

2. If Ricei™ > 0 at some point, then ¢ is constant.

3. If Riem™ < 0, then ¢ is either constant or of rank one, in which

case its image is a closed geodesic.

The above scheme was extended in [28] to show that a harmonic map

of finite energy from a complete non-compact manifold of non-negative
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Ricci curvature to a compact manifold of non-positive sectional cur-
vature is constant. Some further applications of Proposition 1.6 were
given in [29] in studying harmonic maps from a compact Riemannian
manifold M with Ricei™>A > 0 to a compact Riemannian manifold
N with Riem™<B > 0.

In the case of Kahler manifolds, H. C. Sealey [29] found a complex
analogue of Proposition 1.6 to study holomorphic maps (which are
harmonic) between Kahler manifolds. Another generalization of the
Bochner technique was presented by Y. T. Siu in [30] where he obtained
a Weitzenbock type formula, involving only the curvature of the image
manifold, for harmonic maps between Kahler manifolds. This type
of argument enabled him to study properties of harmonic mappings
and to obtain rigidity results between compact Kahler manifolds, with
curvature conditions on the image manifold only. A similar analysis
was carried out by J. H. Sampson in [27] for harmonic maps from a
compact Kahler manifold into a Riemannian manifold.

Siu’s Weitzenbock type formula was generalized by K. Corlette in
[10], where he presented a rigidity study of quaternionic hyperbolic
space and the hyperbolic Cayley plane by making use of a Bochner
type formula for twisted harmonic maps cf. [10, Theorem 3.1]. Jost-
Yau in [23] established a Bochner type formula following [25] to investi-
gate properties of harmonic maps from compact quotients of symmetric
spaces of non-compact type. Finally in [26], the authors discovered a
generalized Bochner formula to study rigidity and harmonic mappings.
This generalization of the Bochner formula has the formulae of [30],

[27] and [10] as special cases.

2. BOCHNER TECHNIQUE FOR HARMONIC MORPHISMS

In order to extend the Bochner technique to the study of harmonic
morphisms, we follow the work of J. Eells and J. H. Sampson [15].
Using the horizontal conformality condition we obtain the following
analogue of Proposition 1.6, which gives a Weitzenbock formula for

harmonic morphismes.
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Proposition 2.1 (WF for harmonic morphisms). Let M™ and N"
be Riemannian manifolds. Let ¢ : (M™, (-, ->M)—>(N”, (-, >N) be a har-

monic morphism with dilation X\. Then

(2.1) —traceV%do = N RiceiVd¢ — do-RiceiM
and
(2.2) gm? = —||Vdo|)? + A*Scal™ — A2Scal™ |,

where ScalM|H is defined in Definition 1.5.

Proof. Let = be a regular point of M. The horizontal conformality con-
dition implies that there exists an orthonormal basis (¢})_; of Ty )N
such that

(2.3) do(es) = Xel, for s=1,...,n
and
(2.4) dp(es) =0 fors=n-+1,....,m.

Using this together with Theorem 1.4 and Proposition 1.6 we obtain
—traceV2do = N RiceiNd¢ — do-RiceiM
and

gm? = —|Vdo|” + AScal™ — Y (dp-RicciMe,, do - ¢,)"

s=1
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where

Scal™ = 3 (RN(el, )¢ ).

s,t=1

The last term in the above equation can be simplified as follows.
(dp-RicciMe,, dg - e)" = > (RiceiMe,,e)(de - er,dg - e,)"
=1

= )\QZRicciM(es,elﬂe’s,e;)N

=1

= MRicciM(e,, ¢,).

The above argument holds for a critical point, as A = 0 on the critical
set Uy and the proof follows from Definition 1.3 because )\QScalM|H is

a continuous function on Cy. O

For later use we give the following results for totally geodesic hori-

zontally conformal maps.

Definition 2.2. A map ¢: M™—N" is called totally geodesic if its

second fundamental form Vd¢ vanishes, where
Vds(X,Y) = (Vxdg)y = Vi ™N(do- V) — dp(VYY)

for XY € C(TM).

Lemma 2.3. A totally geodesic map has constant rank and constant

energy density e(¢), where e(¢) = $||dp||*>. In particular, a totally

geodesic horizontally conformal map has constant dilation and so is a

homothetic submersion.

Proof. cf. [14, page-15] O
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The Weitzenbock formula for totally geodesic horizontally conformal

maps is given by the following.

Corollary 2.4. Let ¢: M™—N"™ be a non-constant totally geodesic

horizontally conformal map between Riemannian manifolds. Then
(2.5) ScalM|; = A?Scal™

where \? is a non-zero constant.

Proof. Follows directly from Proposition 2.1 and Lemma 2.3. U

As afirst application of the Weitzenbock formula developed in Propo-

sition 2.1 we obtain:

Theorem 2.5. Let (Mm,<-,->M) be an oriented compact Riemann-
ian manifold without boundary. If ScalM|H20 and (N™, <-,->N) is a
Riemannian manifold with Scal™<0, then every harmonic morphism
o: M™—N" is totally geodesic. Furthermore,

1. If ScalM|H > 0 at some point, then ¢ is constant.
2. If Scal™ < 0 at some point, then ¢ is constant.

3. If ¢ is non-constant, then ¢ is a homothetic submersion and

Scal™|;=0, Scal¥=0.

Proof. Integrating Equation (2.2) of Proposition 2.1 over M and making
use of the fact that

[ ane=o

for any smooth function f on an oriented compact manifold without

boundary, we have

/ HVdeHQUM:/ )\4ScaleM—/ )\QScalM|HvM.
M v "
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Since our hypothesis implies that the left hand side is non-negative and
the right hand side is non-positive, this makes both sides zero. The left

hand side of the above equation gives

IVde|* =0,

making ¢ a totally geodesic map.

1. By an argument similar to the one above we have
A*ScalM|; = 0.

The proof follows from the hypothesis and Lemma 2.3.
2. Similar to part 1.

3. Immediate from Lemma 2.3.

O

Remark 2.6. It might appear that the above Weitzenbock formula
is applicable only for harmonic morphisms from a Riemannian mani-
fold of non-negative Ricci curvature to a Riemannian manifold of non-
positive scalar curvature. But under a weaker curvature restriction,
namely ScalM|H2)\QScalN, we can obtain applications for a harmonic
morphism between Riemannian manifolds M and N, when ScalM|H

and Scal™ have the same sign.

For example, for a harmonic morphism whose dilation is bounded by

the curvatures of the manifolds, we have

Theorem 2.7. Let ¢ : (Mm,<-,->M)—>(N”,<-,->N) be a submersive
harmonic morphism between compact Riemannian manifolds with
Scal|y>A and 0 < ScalN<B where A, B > 0. If the dilation \*

of ¢ is bounded by

A ScalM|y4
< <—F
~ B~ Scal¥

then ¢ is totally geodesic and either ¢ is constant or

)\2
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1. X is constant with \* = % so that ¢ is a homothetic submersion
and

2. The curvatures ScalM|H and Scal™ are constants given by
ScalM|; = A > 0 and Scal™ = B > 0.

Proof. From the hypothesis we have
AScal™ — A?ScalM|;< — AN 4 B

Therefore, the Weitzenbock formula for harmonic morphisms implies
that

A
(2.6) SANS —||[Vde||* + BN(N = ).
Integration of Equation (2.6) over M forces each term on the right
hand side to be zero. This proves that ¢ is totally geodesic and either
A =0 or X is the constant given by \? = %. If A2 = %, Equation (2.2)
implies that

A?Scal™ = Scal™|,

which shows that ScalM|H§A and Scal™>B. Combining this with
the hypothesis completes the proof. O

Corollary 2.4 gives us a non-existence result for totally geodesic hor-

izontally conformal maps between Riemannian manifolds.

Corollary 2.8. There exists no non-constant totally geodesic horizon-
tally conformal map ¢ : (M™, -, ->M)—>(N”, (-, >N) in each of the fol-
lowing cases:

1. Ricci™ > 0 and Scal™ < 0

2. Ricci™ < 0 and Scal™ > 0

3. Ricci™ = 0 and Scal™£0
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4. RicciM#£0 and Scal™ = 0

Proof. Suppose on the contrary that there exists a non-constant totally
geodesic horizontally conformal map in the cases under consideration.

Since A? # 0, in each case we get a contradiction from Corollary 2.4. [

3. APPLICATIONS

In this section we present further applications of Proposition 2.1 and
provide examples where it can be employed to study the classification
of harmonic morphisms. For a harmonic morphism ¢: M™—N" we

consider the cases n > 3 and n = 2 separately.

3.1. The case n > 3.

Theorem 3.1. Let M™ be a compact Riemannian manifold with
Ricei > 0. Then there exists a metric h on the compact
manifold N* (n > 3) such that the only harmonic morphisms with

respect to h are the constant maps.

Proof. Every compact manifold of dim > 3 carries a metric h of con-
stant negative scalar curvature cf. p-389 of [1] or Corollary 5.4 of [24].
This fact combined with Proposition 2.1 gives the result. O

As an example there exists a metricon N™ (n > 3) such that there are
no non-constant harmonic morphisms from an irreducible Riemannian

symmetric space of compact type to N”.

3.2. n = 2. Recall that the notion of a harmonic morphisms to a Rie-
mann surface N? does not depend on any specific Hermitian metric
on N2, as the composition of harmonic morphisms is a harmonic mor-
phism and a weakly conformal map between surfaces is a harmonic

morphism.

Theorem 3.2. Let N? be a compact Riemann surface. If N? has genus
g > 2, then there exists no non-constant harmonic morphism from a

compact Riemannian manifold M™ of non-negative Ricci curvature to

N2,
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Proof. Every compact Riemann surface of genus ¢ > 2 has a Hermitian
metric of constant negative curvature. The theorem then follows from

Theorem 2.5. O

A rich collection of examples, to apply our results, is given by sym-

metric spaces and Lie groups.

Corollary 3.3.

1. There does not exist a non-constant harmonic morphism from an
irreducible Riemannian symmetric space of compact type to a com-
pact Riemann surface N? of genus g > 1.

2. In particular, there exists no non-constant harmonic morphism
from a compact connected Lie group, endowed with a bi-invariant

metric, to a compact Riemann surface of genus g > 1.

Proof.

1. If g > 2 we get the result from the above. Suppose ¢ = 1. Then
N? carries a Hermitian metric of zero curvature and the proof
follows from an argument similar to Theorem 3.2.

2. The proof follows from the fact that every compact connected Lie
group is a Riemannian symmetric space of positive Ricci curvature

with respect to each bi-invariant structure.

O

It is known that a complete Riemannian locally symmetric space is
Riemannian covered by a Riemannian globally symmetric space. In
view of Corollary 3.3, we comment that if a complete Riemannian lo-
cally symmetric space M is covered by a globally symmetric space of
compact type, there exists no non-constant harmonic morphism from
M to a compact Riemann surface of genus g > 1.

Note that many examples of compact Einstein manifolds with pos-
itive scalar curvature are given in [8]. A non-existence result for har-

monic morphisms from such manifolds is given by the following.
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Corollary 3.4. Let M™ be a compact Finstein manifold with positive
scalar curvature. There exist no non-constant harmonic morphisms

from M™ to a compact Riemann surface of genus g > 1.

4. BOCHNER TECHNIQUE FOR MORPHISMS OF p-HARMONIC
FUNCTIONS

In Section 2 we obtained a method of generalizing the Weitzenbock
formula for harmonic maps (also called 2-harmonic maps) to harmonic
morphisms (or morphisms of 2-harmonic functions). In this section we
show that this method works well to obtain a Weitzenbock formula for
morphisms of p-harmonic functions.

For a smooth map ¢: M —N" the p-energy of ¢ on a compact
domain ) C M is defined as

1
[ S d pUM
(®) » /Q |de]]

where, at a point x € §,

[del|” = () (do- e, d - e,))*

s=1

for an orthonormal basis (e,)/_, of T, M.

Definition 4.1. A map ¢: M™—N" is called p-harmonic if it is a

critical point of the p-energy functional.

The first variational formula of the p-energy, cf. [3], implies that a
smooth map ¢: M™—N" is p-harmonic if and only if its tension field
7,(¢) = 0 where

(@) = Y AVe.(|[do|P*dg)}(e.)

and V is the connection on the bundle T*M @ ¢~ 'TN.
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Definition 4.2. A map ¢: M™—N" is a morphism of p-harmonic
functions if for a p-harmonic function f on an open set V of N, the
function f o ¢ is a p-harmonic function on ¢~*(V'), with ¢~*(V') non-
empty.

For p = 2 morphisms of p-harmonic functions are the harmonic mor-
phisms defined in the usual sense. Despite some work being done in
this direction, a characterization of morphisms of p-harmonic functions
for p > 2, analogous to Theorem 1.4, has not yet been obtained. The

only result in this direction is the following.

Theorem 4.3. [31] Let ¢ be a p-harmonic and horizontally conformal

map from M™ to N™. Then ¢ is a morphism of p-harmonic functions.

We obtain the following Weitzenbock formula for horizontally con-
formal p-harmonic maps, from a Weitzenbock formula for p-harmonic

maps [31].

Proposition 4.4. Let ¢ be a p-harmonic and horizontally conformal
map between Riemannian manifolds (M™, (-, >M) and (N, (-, >N) with
dilation X. Then

22 AN = — div(wh)
2p

(4.1) (=20 TN N (Ve dd ey di - e,))

t=1 s=1

+ 0 T AP || Vdo|) + A*ScalN — A2Scal™ |}

where w' is a vector field on M defined by

(wh, XYM = w(X) = ||dg|["™>> ((Ve.dd)er, dp- X)

t=1

for any vector field X on M.
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Proof. Let (es);nzl be an orthonormal basis of 7,M. The Weitzenbock

formula for p-harmonic maps can be written, cf. [31], as

1
—Alldg||" = — div(w)
p

—(p=2ds|I"™> (D (Ve €0 d - €5))?

t=1 s=1

+ [ dg 7= Vdg|* + Y (RN (ddre,, ddrei)dre,, direr)™

s,t=1

_ iwgb-RicciMGS, d¢'€s>M}

s=1

where w! is a vector field on M defined as in the statement.

By applying the horizontal conformality condition to the above
Weitzenbock formula and doing calculations similar to those of Proposi-
tion 2.1, we obtain the Weitzenbock formula for horizontally conformal

p-harmonic maps. O

This result can be used to determine conditions under which a hori-

zontally conformal p-harmonic map reduces to a harmonic morphism.

Theorem 4.5. Let (M™, (-, and (N, (-,-Y") be Riemannian man-
ifolds with ScalM|H > 0 and Scal™ < 0. Suppose that M is compact.
Then every horizontally conformal p-harmonic map ¢: M™—N" is a

harmonic morphism.

Proof. If we integrate Equation (4.1) over M, then an analysis similar
to the proof of Theorem 2.5 tells us that ¢ is totally geodesic. Hence
for any X € C(TM), X(]|d¢||?) = 0 cf. Lemma 2.3. Therefore, ||do||

is constant and ¢ is a harmonic morphism. O
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