#### **Section 3.1** *Linear Models*

In this section, we will model some simple real-life situations which give rise to linear differential equations.

### **Learning Outcomes**

After completing this section, you will inshaAllah be able to

- 1. explain mathematical models for studying
  - a. Cooling or warming problems
  - b. Series circuits problems
- 2. solve these models

What is modeling with ODEs
It is the process of writing a differential equation to describe a
physical situation involving rate of change

• Along with modeling few situations, we will also learn the basic principles of constructing mathematical models

# Why do we need to study models?

- Usually to answer the questions posed in real world situation, we need to know relation between different quantities.
- Let us look at a hypothetical situation.



Before we get to the examples of models, note that:

Construction of model is based on Mathematical way of describing rate of change

#### **Cooling or warming models**

• First look at an example

**Example: 1** The initial temperature of a laban bottle is  $28^{\circ}C$ . You put it in your refrigerator having temperature  $4^{\circ}C$  inside. In 15 minutes you measure the temperature of laban bottle and find that it is  $22^{\circ}C$ . How long do you have to wait so that the temperature of laban bottle is  $10^{\circ}C$  (and you can have a cool drink!!)?

#### **Construction of model**

- T(t): temperature of laban at time t
- $T_{frig}$ : temperature of refrigerator = 4° C
- Introducing variables
- Writing given information

Scientific principle: Newton's law of cooling/warming The rate of change of the temperature T(t) (with respect to time) of a body is proportional to the difference between *T* and the temperature of the surrounding medium.

Mathematically: The rate of change of population T(t) with dT

respect to time *t* is given by the derivative

Combining the above we have 
$$\frac{dT}{dt} \propto (T - T_{frig})$$

Constructing model

Hence, the model representing your real life (laban) problem is given as

$$\frac{dT}{dt} = k(T - T_{frig}) \text{ with } T(0) = 28^{\circ}C$$
$$\frac{dT}{dt} = k(T - 4) \text{ with } T(0) = 28^{\circ}C$$

or

where k is the proportionality constant (depending on the surrounding medium).

# **Cooling or warming models (contd)**



See example 2 done in class



- Current is same at all points
- Capacitor is the only component with a charge associated to it

3.1<sub>5</sub>



• Voltage drop across an inductor is proportional to rate of change of current

$$E_L = L \frac{di}{dt}$$

## Capacitor

• Voltage drop across a capacitor is proportional to the charge q on capacitor



# Series circuits (contd)

Scientific principle: Kirchoff's Voltage Law The sum of voltage drops across the components of a circuit equals the applied voltage

 $E_L + E_R + E_C = E(t)$ 



See example 3 done in class

3.1<sub>7</sub>

**Example: 4** A 200 volt electromotive force is applied to an RC series circuit in which the resistance is 1000 ohms and the capacitance is  $5 \times 10^{-6}$  farad. Find the charge q(t) on the capacitor if i(0) = 0.4. Determine the charge as  $t \rightarrow \infty$ .

Solution:

or

• Since there is no inductor, the above equation (\*) becomes

$$iR + \frac{1}{C}q = E(t)$$
  
Using  $i = \frac{dq}{dt}$  we get  
 $R\frac{dq}{dt} + \frac{1}{C}q = E(t)$ 

• For  $R = 1000, C = 5 \times 10^{-6}, E = 200$  we need to solve ODE

$$1000 \frac{dq}{dt} + \frac{1}{5 \times 10^{-6}} q = 200$$
$$\frac{dq}{dt} + 200q = \frac{1}{5}$$

This is a simple linear equation and can be solve by methods of Section 2.3 to get the general solution

$$q = \frac{1}{1000} + \frac{C_1}{e^{200t}}$$
(i)

• Next we want to use i(0) = 0.4 to find  $C_1$ By (i) we have

$$i = \frac{dq}{dt} = -200 \frac{C_1}{e^{200t}}$$

Using i(0) = 0.4, this gives  $C_1 = -\frac{1}{500}$ .

• Solution of problem

Using  $C_1 = -\frac{1}{500}$  in (i) we see that the solution of the problem is  $q(t) = \frac{1}{1000} - \frac{1}{500e^{200t}}$ 

• As  $t \to \infty$ , we have  $q(t) \to \frac{1}{1000}$ .

*End of 3.1*