King Fahd Univ. of Petroleum and Minerals Faculty of Sciences Department of Mathematical Sciences

MAJOR No. 2 (MATH. 102-043 Sections 1 & 2)

Name: ID:

 $\frac{\text{Prob. 1}}{\text{Calculate }} \int \frac{\sin(25\ln x)}{15x} dx$

 $\frac{\text{Prob. 2}}{\text{Find }\int \frac{1}{x^2+4x+7}dx}$

<u>Prob. 3</u>

Find the area between $y = \sin x$ and $y = \cos x$ from x = 0 to $x = 2\pi$.

Prob. <u>4</u> Compute the arc length of $y = x^4 + \frac{1}{32x^2}$ from x = 1 to x = 2.

$\underline{\text{Prob. } 5}$

What is the lateral surface area when we revolve $y = x^{1/3}$ about the y-axis between x = 0 and x = 8?

Prob. 6

Use cylindrical shells to find the volume about by revolving the area in the first quadrant between $x = 2y^3 - y^4$ about the x-axis.

<u>Prob. 7</u>

Find by two different methods the volume when the region bounded by $y = \cos x$ and $y = x^4$ is revolved about the

- a) x = 2
- b) y = 2

c) *x*-axis

d) y-axis

<u>Prob. 8</u>

Sketch the region and axis of revolution that produces the solid whose volume is given by 1^{1}

a)
$$\int_{0}^{1} 2\pi x (x - x^2) dx$$

b) $\int_{0}^{2} 2\pi (4 - y) (y + y) dy$
c) $\int_{0}^{1} \pi [y - y^2] dy$