
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 129, No. 3, pp. 349–372, June 2006 ( C© 2006)
DOI: 10.1007/s10957-006-9070-3

Enumeration of All the Extreme Equilibria in Game
Theory: Bimatrix and Polymatrix Games1

C. AUDET,2 S. BELHAIZA,3 AND P. HANSEN4

Communicated by P. M. Pardalos

Published Online: 29 November 2006

Abstract. Bimatrix and polymatrix games are expressed as parametric linear
0–1 programs. This leads to an algorithm for the complete enumeration of
their extreme equilibria, which is the first one proposed for polymatrix games.
The algorithm computational experience is reported for two and three players
on randomly generated games for sizes up to 14 × 14 and 13 × 13 × 13.
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1. Introduction

Bimatrix and polymatrix games are normal-form, nonzero-sum games with 2
and n ≥ 2 players respectively. In the former case, two payoff matrices are given,
one for each player; in the latter case, there are n(n − 1)/2 pairs of matrices,
one for each pair of players. In contrast with extensive-form or dynamic games,
decision-making is static, simultaneous, and unique.

It follows from Nash’s basic result (Ref. 1) that any bimatrix or polymatrix
game has at least one equilibrium in mixed strategies, i.e., a solution such that
no player has any advantage in changing his strategy without some other one
doing so. But a matrix or polymatrix game may have infinitely many equilibria
consisting of not necessarily disjoint polyhedra (Millham, Ref. 2). This suggests
the enumeration of all the extreme equilibria, or in other words all the equilibria
which correspond to the vertices of such polyhedra. In addition to listing and
comparing them, this would help in the study of various refinements, a topic to be
pursued in further research.
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The purpose of this paper is to present a mixed 0-1 linear programming
formulation of bimatrix and polymatrix games and an algorithm that enumerates
all their extreme equilibria. The paper is organized as follows.

Previous, new formulations and basic proprieties of bimatrix and polymatrix
games are recalled in Sections 2 and 3. The topic of elimination of dominated
strategies is addressed in Section 4. In Section 5, the Eχ -MIP algorithm enumer-
ating all the extreme equilibria is presented and illustrated on some examples.
Computational results on the Eχ -MIP algorithm and the EEE algorithm of Audet
et al. (Ref. 3) on randomly generated bimatrix games are compared and discussed;
also, Eχ -MIP results on randomly generated polymatrix games are presented in
Section 6.

2. Bimatrix Games

2.1. Literature Review. A bimatrix game is a strategic confrontation of
2 players I and II. Both players can be political, social, or economic agents or
institutions. Each player has a finite number of strategies, commonly called pure
strategies. Player I has to choose between n pure strategies, while player II has to
choose between m pure strategies. A bimatrix game is described through a pair of
n × m payoff matrices A and B. The elements aij and bij of the matrices A and
B are respectively the immediate payoffs of player I and player II when the first
plays his ith strategy while the second simultaneously plays his jth strategy.

Each player attempts to maximize his own payoff by selecting a probability
vector over his set of pure strategies. These vectors are combinations of pure
strategies, called mixed strategies and represented by probability vectors x ∈ R

n

and y ∈ R
m. Hence, player I’s payoff is xtAy and player II’s payoff is xtBy.

An equilibrium is defined as a situation where simultaneously player I max-
imizes his payoff given the strategic choice of player II and player II maximizes
his payoff given the strategic choice of player I. An equilibrium point is a situation
where neither player has an interest to unilaterally change his strategic choice.

As shown by Nash (Ref. 1), a bimatrix game possesses always at least one
equilibrium point. Formally, an equilibrium point is a pair of strategies (x̂, ŷ) such
that both

x̂∈X(ŷ) = arg max
x

{xtAŷ : xten = 1, x ≥ 0},
ŷ∈Y (x̂) = arg max

y

{
x̂tBy : et

my = 1, y ≥ 0
}
,

where en and em are n × 1 and m × 1 column vectors with all elements equal
to 1. Clearly, both X(ŷ) for fixed ŷ and Y (x̂) for fixed x̂ are polytopes.

Mills (Ref. 4) and Mangasarian and Stone (Ref. 5) studied the optimality
conditions of the preceding system to establish necessary and sufficient conditions
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of equilibrium. Introducing real-valued variables α and β, the duals of the above
linear programs are

min
α

{α : enα ≥ Aŷ}, min
β

{
β : βet

m ≥ x̂tB
}
.

Primal and dual feasibility conditions yield that a pair of strategies (x̂, ŷ) is an
equilibrium if there exist two scalars α̂ and β̂ satisfying

(x̂, β̂) ∈ X ≡ {
(x, β) ∈ R

n+1 : xtB ≤ βet
m, xten = 1, x ≥ 0

}
, (1)

(ŷ, α̂) ∈ Y ≡ {
(y, α) ∈ R

m+1 : Ay ≤ enα, et
my = 1, y ≥ 0

}
. (2)

Moreover, from the duality theory of linear programming, the dual objective values
α̂ and β̂ are respectively equal to the primal payoffs of players I and II,

x̂tAŷ = α̂, x̂tBŷ = β̂.

The set E of all the equilibrium points is the union of a finite number of
polytopes called maximal Nash subsets (Millham, Ref. 2). The set of extreme
equilibria is the set of vertices of the maximal Nash subsets. As each equilib-
rium can be obtained by the convex combination of some extreme equilibria
(Mangasarian, Ref. 6), the complete enumeration of the extreme equilibria leads
to the complete identification of the set E (Vorobev, Ref. 7).

Keiding (Ref. 8) showed that a nondegenerate n × m bimatrix game has at
most

K = min{�(m, n + m),�(n,m + n)} − 1

extreme equilibria, where �(d, h) denotes the maximum number of vertices of a
d-dimensional polytope with h facets,

�(d, h) =
(

h − �(d − 1)/2� − 1

�d/2�

)

+
(

h − �d/2� − 1

�(d − 1)/2�

)

.

This upper bound on the maximum number of extreme equilibria is probably
not tight. For the particular case of a nondegenerate n × n bimatrix game, Von
Stengel (Ref. 9) shows that the maximum number of extreme equilibria has a
lower bound equal to ψ(n) − 1 and an upper bound equal to ω(n) − 1, where

ψ(n) = 0.949(2.414n)/
√

n, ω(n) = 0.921(2.5981n)/
√

n.

Few algorithms have been proposed to enumerate the extreme equilibria of bi-
matrix games. Early methods were designed to compute one equilibrium (Refs.
7, 10, 11). Others are based on the enumeration of the supports of strategies
(Refs. 12, 13), where a support is a set of pure strategies that are assigned a pos-
itive probability. Yet others (Refs. 6, 14) enumerate all the extreme vertices of X
and Y, then check for all pairs if the complementarity slackness conditions (1) and
(2) hold. The state-of-the-art algorithm EEE (Ref. 3) is a selective enumeration
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method focusing on only vertices that satisfy all the complementarity conditions.
This algorithm uses two linear programs with parametrized objective functions to
explore a tree where each node corresponds to a pair of subproblems and a number
of satisfied complementarity conditions. EEE has been tested on randomly gener-
ated bimatrix games of size up to 29 × 29, when both dimensions are equal, and
of size up to 700 × 5, when the second dimension is fixed (Refs. 3, 15).

2.2. Mixed 0–1 Linear Formulation of a Bimatrix Game. Consider the
primal feasible and bounded parametric linear problems

max
x≥0

{xtAy : xten = 1},
max
y≥0

{
xtBy : et

my = 1
}
,

and their dual problems

min
α

{α : enα ≥ Ay},
min

β

{
β : βet

m ≥ xtB
}
.

For any primal and dual feasible solutions, the weak duality theorem yields

α ≥ xtAy and β ≥ xtBy,

while for any primal and dual optimal solutions, the strong duality theorem ensures
that

α = xtAy and β = xt By.

The complementary slackness conditions can be stated as

xi(α − Ai·y) = 0, for i ∈ N = {1, 2, . . . , n},
(β − xtB·j )yj = 0, for j ∈ M = {1, 2, . . . , m}.

or in matrix form

xt (enα − Ay) = 0, (3a)
(
βet

m − xtB
)
y = 0. (3b)

Pairs of solutions (x, α) or (y, β), feasible for the primal and the dual and sat-
isfying the complementarity slackness conditions, are optimal. If this holds si-
multaneously for the programs of both players, the solution (x, y) is a Nash
equilibrium.

Linearization of these complementary slackness conditions is made possible
through the use of 0–1 variables [Júdice and Mitra (Ref. 16) and Audet et al.
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(Ref. 17)],

(enα − Ay) ≤ L1u, (4a)

(βem − Btx) ≤ L2v, (4b)

x + u ≤ en, (5a)

y + v ≤ em, (5b)

u ∈ {0, 1}n, (6a)

u ∈ {0, 1}m, (6b)

where L1 and L2 are some large constants. Making sure that the constants L1 and
L2 are large enough is often problematic. Fortunately, in our case, the following
result shows how to obtain easily some valid values.

Proposition 2.1. Let

L1 = (
max

i∈N,j∈M
aij

) − (
min

i∈N,j∈M
aij

)
,

L2 = (
max

i∈N,j∈M
bij

) − (
min

i∈N,j∈M
bij

)
,

and at x̂, ŷ, α̂, β̂ be solutions of (4), (5), (6). Then, these solutions satisfy the
complementary slackness conditions (3).

Proof. One can observe that

α̂ = x̂tAŷ ≤ max
i∈N

Ai·ŷ ≤ max
i,j

aij

min
i∈N

Ai·y ≥ min
i,j

aij

β̂ = x̂tBŷ ≤ max
j∈M

x̂B·j ≤ max
i,j

bij

min
j∈M

x̂B·j ≥ min
i,j

bij .

where Ai and (B·j )t are respectively the ith and the jth rows of A and Bt . Thus,
the proof follows from these observations:

(i) if ui = 0, then xi ≤ 1 and α − Ai·y = 0, so xi(α − Ai·y) = 0;
(ii) if vj = 0, then yj ≤ 1 and β − xtB·j = 0, so (β − xtB·j )yj = 0;
(iii) if ui = 1, then xi = 0 and α − Ai·y ≤ L1, so xi(α − Ai·y) = 0;
(iv) if vj = 1, then yj = 0 and β − xtB·j ≤ L2, so (β − xtB·j )yj = 0.

�
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Equations (4)–(6) allow us to model the question of finding the extreme
equilibria through mixed integer programming.

Proposition 2.2. The set of bimatrix game equilibria is the set of pairs
of mixed strategies (x, y) ∈ R

n × R
m for which there exists vectors (u, v) ∈

{0, 1}n × {0, 1}m satisfying

xten = 1,

et
my = 1,

xtB − βet
n ≤ 0,

Ay − αem ≤ 0,

x + u ≤ en,

y + v ≤ em,

(enα − Ay) − L1u ≤ 0,

(βem − Btx) − L2v ≤ 0,

x ≥ 0, y ≥ 0,

u ∈ {0, 1}n, v ∈ {0, 1}m.

Proof. Any equilibrium (x̂, ŷ) satisfies (x̂, β̂) ∈ X and (ŷ, α̂) ∈ Y , as well
as all the complementary slackness conditions. Hence, a point (x, y, α, β) has to
fulfil only the conditions of Proposition 2.2 to be an equilibrium. �

Therefore, if one wishes to use the tools from mixed integer programming,
one has the flexibility in selecting an objective function. Furthermore, solving a
linear program by a simplex algorithm necessarily produces an extreme point of
the domain.

Corollary 2.1. The complete enumeration of all the extreme equilibria of
a bimatrix game can be done through the complete enumeration of all the extreme
feasible solutions of a mixed 0–1 linear problem (i.e., extreme feasible solutions
for each feasible 0–1 vector), defined by the constraints of Proposition 3.2, with
any linear objective function.

For example, f (α, β) = α + β or f (α, β) = 0 could be used.

Any bimatrix game can then be expressed as a mixed 0–1 linear program
with 2 + 3(n + m) constraints, 2 + n + m continuous variables, and n + m bi-
nary variables. For any objective function, the Eχ -MIP algorithm presented in
Section 6 will enumerate all the extreme equilibria through the complete enumer-
ation of the extreme feasible solutions for feasible 0–1 vectors.
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Example 2.1. Let A and B be the payoff matrices of a bimatrix game,

A =

⎛

⎜⎜⎜
⎝

3 2.5 5

4 0 2

2 3.5 1.5

4.5 0.5 5.5

⎞

⎟⎟⎟
⎠

, B =

⎛

⎜⎜⎜
⎝

5 4.5 2.5

2 3 1

1 1.5 3.5

2.5 3.5 4

⎞

⎟⎟⎟
⎠

.

Using Proposition 2.2 and Corollary 2.1, this bimatrix game can be written as
follows

min
α,β,x,y,u,v

f (α, β),

s.t. x1 + x2 + x3 + x4 = 1,

y1 + y2 + y3 = 1,

xi + ui ≤ 1, i = 1, 2, 3, 4,

yj + vj ≤ 1, j = 1, 2, 3,

−α + 3y1 + 2.5y2 + 5y3 ≤ 0,

−α + 4y1 + 2y3 ≤ 0,

−α + 2y1 + 3.5y2 + 1.5y3 ≤ 0,

−α + 4.5y1 + 0.5y2 + 5.5y3 ≤ 0,

−β + 5x1 + 2x2 + x3 + 2.5x4 ≤ 0,

−β + 4.5x1 + 3x2 + 1.5x3 + 3.5x4 ≤ 0,

−β + 2.5x1 + x2 + 3.5x3 + 4x4 ≤ 0,

α − 3y1 − 2.5y2 − 5y3 − 5.5u1 ≤ 0,

α − 4y1 − 2y3 − 5.5u2 ≤ 0,

α − 2y1 − 3.5y2 − 1.5y3 − 5.5u3 ≤ 0,

α − 4.5y1 − 0.5y2 − 5.5y3 − 5.5u4 ≤ 0,

β − 5x1 − 2x2 − x3 − 2.5x4 − 4v1 ≤ 0,

β − 4.5x1 − 3x2 − 1.5x3 − 3.5x4 − 4v2 ≤ 0,

β − 2.5x1 − x2 − 3.5x3 − 4x4 − 4v3 ≤ 0,

x ≥ 0, y ≥ 0,

u ∈ {0, 1}4, v ∈ {0, 1}3.

3. Polymatrix Games

3.1. Literature Review. The strategic confrontation of n players, n ≥ 2, in
a normal and noncooperative context is a polymatrix game if the payoffs are sums
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of the values for each player and all other ones pairwise. Let N = {1, . . . , n} be
the set of all players and set each player i ∈ N have a finite set of pure strategies
Si = {s1

i , . . . , s
mi

i } with |Si | = mi .
If player i chooses his strategy sk

i and if player j chooses his strategy sl
j a

partial payoff aij (sk
i , s

l
j ) is assigned for player i. So, for any pure strategic choice

(sk
1 , . . . , sl

n) of the n players, the overall payoff of player i at the end of the game
is

Ai

(
sk

1 , . . . , sl
n

) =
∑

j 	=i

aij

(
sk
i , s

l
j

)
.

The mi × mj matrix Aij = (akl
ij ) is defined as player i’s partial payoff matrix

relative to player j’s strategic decisions. Thus, player i’s payoff relative to player
j’s decisions is not correlated with any of the remaining players’ choices.

As in bimatrix games, in a polymatrix game each player i attempts to max-
imize his own overall payoff by selecting a probability vector Xi over his set of
pure strategies. The mixed strategy vector Xi is such that

(Xi)
T = (

x1
i , . . . , x

mi

i

)
,

where for all k ∈ {1, . . . , mi}, xk
i is the relative frequency or probability with

which player i plays his strategy sk
i ∈ Si . So, player i’s mixed strategies belong to

the set

S̃i = {Xi : etXi = 1, Xi ≥ 0}.
The overall payoff of player i at the end of a polymatrix game is

Ri(X) = (Xi)
T

∑

j 	=i

AijXj

=
∑

j 	=i

mi∑

k=1

mj∑

l=1

akl
ij xk

i x
l
j .

A n-tuple X∗ = (X∗
1, . . . , X

∗
n) of mixed strategies is called a Nash equi-

librium in a polymatrix game if and only if, for any other n-tuple X =
(X∗

1, . . . , X
∗
i−1, Xi,X

∗
i+1, . . . , X

∗
n), the following inequality is satisfied:

(X∗
i )T

∑

j 	=i

AijX
∗
j ≥ (Xi)

T
∑

j 	=i

AijX
∗
j , for i ∈ N ; (7)

i.e., player i’s payoff relative to all other players is simultaneously maximized
for i ∈ N . Again, it follows that a polymatrix game has at least one equilibrium
(Ref. 1). For a set of mixed strategies X1, . . . , Xn and for i ∈ N , let

αi = (X∗
i )T

∑

j 	=i

AijXj . (8)
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Consider an mi × 1 column vector ei
r with its rth element equal to 1 and all other

elements equal to 0 and use the fact that inequality (7) holds for all Xi , even for
Xi = ei

r , r = 1, . . . , mi . Howson (Ref. 18) showed that (8) holds only if

αie
i ≥

∑

j 	=i

AijXj , for i ∈ N, (9)

where ei is an mi × 1 column vector with all elements equal to 1. This leads to
the statement

(X∗
i )T αie ≥ (X∗

i )T
∑

j 	=i

AijXj ⇒ (X∗
i )T

⎛

⎝
∑

j 	=i

AijX
∗
j − αie

⎞

⎠ = 0. (10)

This last result, due to Quintas (Ref. 19), implies that each αi, i ∈ N , corre-
sponds to the overall payoff of player i at an equilibrium. The relation (10) is a
first complementarity condition. Similarly, define

Yi = αie −
∑

j 	=i

AijXj , µi = eT X∗
i − 1, for i ∈ N.

Using (8)–(10) and the fact that X∗
i is a probability vector, the following

conditions can be stated:

Xi ≥ 0, Yi ≥ 0, (X∗
i )T Yi = 0, for i ∈ N, (11)

µi ≥ 0, αi ≥ 0, µiαi = 0, for i ∈ N. (12)

Then, computing polymatrix game equilibria is equivalent to seeking solutions for
the linear complementarity problem (Refs. 20, 21)

(LCP) Z ≥ 0, W = Q + MZ ≥ 0, ZT W = 0,

where Q and M are well chosen, while Z and W are the decision variables.
Again, the set E of all the equilibrium points is the union of a finite number

of polytopes called maximal Nash subsets and the set of the extreme equilibria is
the set of vertices of these maximal Nash subsets.

For some class of matrices Q and M, the linear complementarity problem
(LCP) has been solved by Cottle and Dantzig (Refs. 20, 22) and by Lemke and
Howson (Refs. 11, 23). However, polymatrix games data do not belong to this
class of matrices. Yanovskaya (Ref. 21) was the first author to compute polymatrix
equilibria by solving a LCP. The problem was solved using the complementary
pivoting method. Howson (Ref. 18), Eaves (Ref. 24), and Howson and Rosenthal
(Ref. 25) adopted the same approach to solve the LCP. However, the enumeration
of all the polymatrix game extreme equilibria does not appear to have been done
yet for a number of players n exceeding 2.
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3.2. Mixed 0–1 Linear Formulation of a Polymatrix Game. This section
presents a mixed 0–1 linear formulation to be used for the complete enumeration
of the extreme equilibria of bimatrix and polymatrix games. The order of the
presentation is very similar to that of Section 2.2 for bimatrix games.

Considering player i’s primal multiparametric linear program in a polymatrix
game,

max
Xi

Xi

∑

j 	=i

AijXj ,

s.t et
mi

Xi = 1,

Xi ≥ 0,

and player i’s dual problem

min
αi

αi,

s.t αie
i ≥

∑

j 	=i

AijXj ,

the linearization of all the complementary slackness conditions (10) can be done
again using binary variables. This leads to a mixed 0–1 linear formulation of a
polymatrix game.

For i ∈ N , the complementary slackness conditions are written as

(Xi)
T

⎛

⎝αie
i −

n∑

j=1,j 	=i

AijXj

⎞

⎠ = 0, (13)

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

αie
i −

n∑

j=1,j 	=i

AijXj − LiUi ≤ 0, (14a)

Xi + Ui ≤ e. (14b)

Selection of Li can be done again by simple arithmetic. Li is of the same order of
magnitude as the input.

Proposition 3.1. Let Li = ∑n
j=1,j 	=i �ij , for i ∈ N , where �ij = amax

ij −
amin

ij is the difference between the largest and the smallest elements of Aij ,

i.e. amax
ij = maxk∈mi,l∈mj

akl
ij and amin

ij = mink∈mi,l∈mj
akl

ij . The solutions X̂ =
(X̂1, X̂2, . . . , X̂n) and α̂ = (α̂1, α̂2, . . . , α̂n) of (14) satisfy the complementary
slackness conditions (13).
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Proof. For i ∈ N , one can observe that

n∑

j=1,j 	=i

amin
i,j ≤ αi ≤

n∑

j=1,j 	=i

amax
i,j ,

n∑

j=1,j 	=i

amin
i,j ≤

n∑

j=1,j 	=i

AijXj ≤
n∑

j=1,j 	=i

amax
i,j .

Therefore,
⎛

⎝αie
i −

n∑

j=1,j 	=i

AijXj

⎞

⎠ ≤
⎛

⎝
n∑

j=1,j 	=i

�i,j

⎞

⎠ Ui, for i ∈ N.

Thus, choosing Li as in Proposition 3.1 makes (13) hold. �

The question of finding the extreme equilibria for a polymatrix game can be
stated through mixed integer programming.

Proposition 3.2. The set of polymatrix game equilibria is the set of mixed
strategies vectors (X1, X2, . . . , Xn) ∈ R

m1 × R
m2 × · · · × R

mn such that, for
i ∈ N ,

Xt
i e = 1,

Xi + Ui ≤ e,

0 ≤ αie
i −

n∑

j=1,j 	=i

AijXj ≤ LiUi,

Xi ≥ 0, Ui ∈ {0, 1}mi .

Proof. Any polymatrix game equilibrium (X,α) is such that, for each player
i ∈ N ,

(Xi, αi)∈(X,α)

≡
⎧
⎨

⎩
(Xi, αi) ∈ R

mi+1 : Xt
i e = 1, αie

i ≥
n∑

j=1,j 	=i

AijXj ,Xi ≥ 0

⎫
⎬

⎭
,

and with all complementary slackness conditions fulfilled,

αie
i −

n∑

j=1,j 	=i

AijXj − LiUi ≤ 0, Xi + Ui ≤ e.

�
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Moreover, the use of mixed integer programming allows flexibility in the
selection of an objective function. Again, one can observe that solving a linear
program by a simplex algorithm necessarily produces an extreme point of the
domain.

Corollary 3.1. The enumeration of all the extreme equilibria of a polyma-
trix game can be done through the complete enumeration of all the extreme feasible
solutions of a mixed 0–1 linear program, subject to the constraints appearing in
Proposition 3.2, with a linear objective function.

For example,

f (α1, α2, . . . , αn) =
n∑

i=1

αi or f (α1, α2. . . . , αn) = 0

can be used. Hence, to each player i, a binary column Ui and a mixed strategy
vector Xi are associated, both with the same dimension mi , recalling that mi is
the number of pure strategies of player i.

For a polymatrix game, where N is the number of players and M = ∑n
i=1 mi

is the overall number of pure strategies, the preceding mixed 0–1 linear formulation
has N + 3M constraints.

Example 3.1. Let A, B, C be the payoff matrices of a 3-player polymatrix
game,

A =
(

2 0
∣∣ 3 5

3 4
∣∣ 1 4

)
, B =

(
0 5

∣∣ 3 2
1 4

∣∣ 6 7

)
, C =

(
4 1

∣∣ 6 0
1 2

∣∣ 5 3

)
.

Using Proposition 3.2 and Corollary 3.1, this polymatrix game could be
written as

min
α,β,γ,x,y,z,u,v,w

f (α, β, γ ),

s.t. x1 + x2 = 1,

y1 + y2 = 1,

z1 + z2 = 1,

xi + ui ≤ 1, i = 1, 2,

yj + vj ≤ 1, j = 1, 2,

zk + wk ≤ 1, k = 1, 2,

−α + 2y1 + 3z1 + 5z2 ≤ 0,

−α + 3y1 + 4y2 + z1 + 4z2 ≤ 0,

−β + 5x2 + 3z1 + 2z2 ≤ 0,
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−β + x1 + 4x2 + 6z1 + 7z2 ≤ 0,

−γ + 4x1 + x2 + 6y1 ≤ 0,

−γ + x1 + 2x2 + 5y1 + 3y2 ≤ 0,

α − 2y1 − 3z1 − 5z2 − 8u1 ≤ 0,

α − 3y1 − 4y2 − z1 − 4z2 − 8u2 ≤ 0,

β − 5x2 − 3z1 − 2z2 − 10v1 ≤ 0,

β − x1 − 4x2 − 6z1 − 7z2 − 10v2 ≤ 0,

γ − 4x1 − x2 − 6y1 − 9w1 ≤ 0,

γ − x1 − 2x2 − 5y1 − 3y2 − 9w2 ≤ 0,

x ≥ 0, y ≥ 0, z ≥ 0,

u, v,w binary vectors.

4. Elimination of Dominated Strategies

A polymatrix game strategy is dominated, for a given player, if its payoff
is less than or equal to the payoff of a convex combination of all his remaining
strategies. However, two kinds of dominated strategies are observed; strongly
dominated strategies and weakly dominated strategies.

4.1. Strongly Dominated Strategies. Elimination of strongly dominated
strategies offers the incentive of reducing the polymatrix game size before any
process of enumeration of the extreme equilibria is executed.

Definition 4.1. For a given player i, a strategy is strongly dominated if and
only if it does not belong to the set of best responses to all the remaining players
strategic choices.

In a polymatrix game, if the 	th strategy of player i is strongly dominated,
there exists a vector of positive scalars

λt = (λ1, . . . , λk−1, λk+1, . . . , λmi
)t ,

such that, for any combination of all the remaining players strategic choices
S − {Si}, the following relations hold:

mi∑

q=1, q 	=	

λq = 1,
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mi∑

q=1, q 	=	

⎛

⎝
n∑

j=1, j 	=i

λqa
qh

ij

⎞

⎠ >

n∑

j=1, j 	=i

a	h
ij , ∀h ∈ Sj , ∀Sj ∈ S\{Si}.

Example 4.1. Consider the following 3-player polymatrix game:

A =
(

2 0
∣∣ 3 5

3 4
∣∣ 1 4

)
, B =

(
0 5

∣∣ 3 2
1 4

∣∣ 6 7

)
, C =

(
4 1

∣∣ 6 0
1 2

∣∣ 5 3

)
.

The first strategy of player II is strongly dominated by his second strategy, where
if λ2 = 1 for player II, then

λ2 × (1 + 6)= 7 > 0 + 3, λ2 × (1 + 7)= 8 > 0 + 2,

λ2 × (4 + 6)= 10 > 5 + 3, λ2 × (4 + 7)= 11 > 5 + 2.

Elimination of this strategy yields a 2 × 1 × 2 polymatrix game,

A′ =
(

0
∣∣ 3 5

4
∣∣ 1 4

)
, B ′ = (

1 4
∣∣ 6 7

)
, C ′ =

(
4 1

∣∣ 0
1 2

∣∣ 3

)
.

The first strategy of player I is also a strongly dominated strategy. Recursively, let
λ′

2 = 1 for player I. Then,

λ′
2 × (4 + 1) = 5 > 0 + 3, λ′

2 × (4 + 4) = 8 > 0 + 5.

Elimination of this strategy yields a 1 × 1 × 2 polymatrix game,

A′′ = (
4
∣∣ 1 4

)
, B ′′ = (

4
∣∣ 6 7

)
, C ′′ =

(
1
∣∣ 0

2
∣∣ 3

)
.

Finally, let λ′′
2 = 1 for player III, then

λ′
2 × (2 + 3) = 5 > 1 + 0.

Even player III’s first strategy is then a strongly dominated strategy. Elimination
of this strategy yields a 1 × 1 × 1 polymatrix game,

A′′′ = (4 | 4) , B ′′′ = (4 | 7) , C ′′′ = (2 | 3) .

Consequently, only one extreme equilibrium can be found for this polymatrix
game. It is important to notice that the second-time and third-time eliminated
strategies were not strongly dominated in the original game.

Elimination of strongly dominated strategies reduces the size of the matrices.
This reduces the computational work for the extreme equilibria enumeration of a
polymatrix game.
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Proposition 4.1. For a polymatrix game, recursive identification of all
strongly dominated strategies requires at most M2 = (

∑n
i=1 mi)2 iterations.

Proof. The maximum number of iterations required for the complete iden-
tification of a polymatrix game’s strongly dominated strategies is equal to the sum
of all the iterations if only one strongly dominated strategy is identified at each
iteration. This number of iterations is the sum of arithmetic series terms,

M + (M − 1) + (M − 2) + · · · + N � M(M + 1)/2.

Therefore, the maximum number of iterations required for the complete identifi-
cation of all strongly dominated strategies is in the range

M2 =
(

n∑

i=1

mi

)2

.

�

All the extreme equilibria of the original game will be enumerated in the
residual game (i.e., without strongly dominated strategies), because a rational
player will never have an incentive to play a strongly dominated strategy (Myerson,
Ref. 26).

4.2. Weakly Dominated Strategies.

Definition 4.2. Considering a polymatrix game, the 	th strategy of a given
player i is weakly dominated if there exists a vector of positive scalars λt =
(λ1, . . . , λk−1, λk+1, . . . λmi

)t , such that, for any combination of all the remaining
players strategic choices S − {Si}, the following relations hold:

mi∑

q=1,q 	=l

λq = 1,

mi∑

q=1,q 	=	

⎛

⎝
n∑

j=1,j 	=i

λqa
qh

ij

⎞

⎠ ≥
n∑

j=1,j 	=i

a	h
ij , for each h ∈ Sj and Sj ∈ S\{Si}.

A rational player would be indifferent between choosing a weakly dominated
strategy or a convex combination of all his remaining strategies (Myerson, Ref. 26).
Thus, elimination of weakly dominated strategies is risky and offers no warranties
on the complete enumeration of the extreme equilibria of the original game.
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5. Algorithm Eχ -MIP

Algorithm Eχ -MIP for the enumeration of all the extreme equilibria in
bimatrix and polymatrix games is presented next, its rules are stated, and a proof of
its validity is given. The Eχ -MIP algorithm is designed to generate a branching tree
where, at each node, a dichotomous branching over one of the binary variables is
done. The tree generated is composed of a principal tree and many secondary trees.

The principal tree is designed to detect all binary variables combinations in-
volved in one or more extreme equilibria. A secondary tree is generated from every
principal tree node offering a feasible solution, i.e. an extreme equilibrium. Hence,
each binary variable combination involved in an extreme equilibrium is completely
explored in order to find all the extreme equilibria that could be obtained from
this combination. To avoid the repetitive exploration of the same binary variables
combination, an eliminating constraint is added once the secondary exploration is
achieved. These constraints are often redundant and could be eliminated in part to
reduce the problem size (see the example below).

At each node of the principal tree, a mixed 0–1 linear program is solved. This
program is composed of the original program with some binary variables fixing
constraints and some combination of binary variables eliminating constraints.

Each secondary tree node represents the solution of a linear problem, com-
posed of the original problem with some binary variable fixing constraints, some
combination of binary variables eliminating constraints, and some continuous
variables fixing constraints. The algorithm can now be formally stated.

Algorithm Eχ -MIP.

Step 1. Initialization. Let
P = initial mixed 0–1 linear problem,
X = set of P’s continuous variables,
U = set of P’s binary variables,
E = ∅, set of extreme equilibria,
N = 0, depth level in the principal tree,
R, principal tree root node,
C, current node,
x

q

i , continuous variable associated to player i, i = 1, . . . , n, qth
strategy,

u
q

i , binary variable associated to player i, i = 1, . . . , n, qth
strategy.

Take C = R and go to Step 2.
Step 2. Solving and Memorizing. If N ≤ |X|, solve the current node prob-

lem. If the problem is infeasible go to Step 4. Else, let ê be the
solution obtained; if ê 	= E, add ê to E. Go to Step 3.
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Step 3. Secondary Branching. If the current node C belongs to the principal
tree, fix the binary variables vector û, û ∈ U , at its value in ê,∀x

q

i ∈
X such that x̂

q

i > 0: Add the branch x
q

i = 0 and go to Step 2.
Step 4. Principal Branching. If the current node belongs to the principal tree,

no extreme equilibria can be found from this node or its sons. Else,
return to the father node in the principal tree and add a constraint to
eliminate the combination of binary variables û found in ê.

Choose a binary variable u
q

i ∈ U , on which no branching was
done in the preceding nodes and such that its continuous variable x

q

i

is the closest to 0.5 (choose arbitrarily in case of equality).
Let p = N + 1. If p ≤ |X|, set N = p. Then, add the branch

u
q

i = 0; if in û, û
q

i = 1, delete û’s eliminating constraint, go to
Step 2; add the branch u

q

i = 1; if in û, û
q

i = 0, delete û’s eliminating
constraint, go to Step 2. Else, go to Step 5.

Step 5. End. The set |E| contains all the extreme of the game.

Theorem 5.1. Algorithm Eχ -MIP enumerates in finite time all the extreme
equilibrium points of a bimatrix or a polymatrix game.

Proof. By principal branching, Eχ -MIP explores all the binary variables
combinations involved in one or more extreme equilibria, due to Propositions 3.2
and 5.2, and by

(i) adding eliminating constraints for already explored combinations,
(ii) branching on binary variables till the maximum depth equals the overall

number of strategies involved in the game.

By secondary branching, Eχ -MIP enumerates all the extreme equilibria that
can be obtained from a binary variables combination û by

(iii) fixing the combination of binary variables û,
(iv) adding branches x

q

i = 0.

Therefore, this branching enumerates from û all the extreme equilibria where
some complementary slackness conditions are satisfied from both sides: x

q

i > 0
and u

q

i = 0. Thus, after branching,

x
q

i = 0, u
q

i = 0,

⎛

⎝αi −
n∑

j=1,j 	=i

A
q

ijXj

⎞

⎠ = 0

⇒ x
q

i

⎛

⎝αi −
n∑

j=1,j 	=i

A
q

ijXj

⎞

⎠ = 0.
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The algorithm explores all the possible ways to satisfy the complementary
slackness conditions and, if ê is an extreme equilibrium, there exists necessarily a
path in the tree generated by Eχ -MIP leading to ê. �

Example 5.1. Consider a 3-player 3 × 3 × 3 polymatrix game, where A, B,
C are the payoff matrices of players I, II, III,

A =
⎛

⎝
1 1 −1

∣∣ 2 3 2.5
2 −1 −1

∣∣ −1 0 2
3 −1.5 −1

∣∣ −1 2 1

⎞

⎠ ,

B =
⎛

⎝
−1 2 1

∣∣ −2 3 1
3 0 3.5

∣∣ 1 −1 −1
3 3.5 3

∣∣ 2 1 −2

⎞

⎠ ,

C =
⎛

⎝
−3 −1 1

∣∣ 1 2 −3
4 1 4

∣∣ 2 1 2
1 2 2.2

∣∣ 3 2 4

⎞

⎠ .

Algorithm Eχ -MIP enumerates 7 extreme equilibria for this game. Figure 1 illus-
trates a subset of the 107 nodes generated by Eχ -MIP.

Solving the original mixed 0–1 linear problem gives the first extreme equi-
librium at the root node,

α = 5, β = 4, γ = 6,

Xt = (0, 0, 1), Y t = (1, 0, 0), Z = (0, 1, 0),

U t = (1, 1, 0), V t = (0, 1, 1), W = (1, 0, 1).

Fixing the binary variables combination creates a secondary branching tree over
nonequal to zero continuous variables. No feasible solution is found on this tree
and the algorithm returns to the principal tree to add a constraint in order to
eliminate the binary variables combination found in Equilibrium 1,

Ut = (1, 1, 0), V t = (0, 1, 1), W t = (1, 0, 1),

u1 + u2 + (1 − u3) + (1 − v1) + v2 + v3 + w1 + (1 − w2) + w3 ≤ 8

⇐⇒ u1 + u2 − u3 − v1 + v2 + v3 + w1 − w2 + w3 ≤ 5.

However, this constraint is already satisfied at the node created by the w3 = 0
branching. Equilibrium 2 is found at this node:

α = 4, β = 3, γ = 5,

Xt = (0, 1, 0), Y t = (1, 0, 0), Z = (0, 0, 1),

U t = (1, 0, 0), V t = (0, 1, 1), W = (1, 1, 0).

Table 1 summarizes the 7 extreme equilibria enumerated in this game.
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Fig. 1. Example 5.1, size 3 × 3 × 3.

6. Numerical Results

Two versions of the Eχ -MIP algorithm were implemented, one for bimatrix
games and one for 3-player polymatrix games. The algorithm is coded in C++

Table 1. Example 5.1, size 3 × 3 × 3.

Eq. α β γ Xt Y t Zt Ut V t W t

1 5 4 6 (0, 0, 1) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 1, 1) (1, 0, 1)
2 4 3 5 (0, 1, 0) (1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 1) (1, 1, 0)
3 4 2.286 5.143 (0, 0.29, 0.71) (1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 1) (1, 0, 0)
4 3 1.487 4.713 (0.56, 0.43, 0.01) (0.73, 0, 0.27) (0, 0.09, 0.91) (0, 0, 0) (0, 1, 0) (1, 0, 0)
5 2.5 1.2 4.9 (0.6, 0.4, 0) (0.5, 0, 0.5) (0, 0, 1) (0, 0, 1) (0, 1, 0) (1, 1, 0)
6 2 4 6 (1, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 1, 0) (1, 0, 1)
7 3 4 6 (0, 0, 1) (0.5, 0, 0.5) (0, 1, 0) (0, 1, 0) (0, 1, 0) (1, 0, 1)
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Table 3. Eχ -MIP Algorithm, m1 = m2 = m3.

d = 0.12 d = 0.25

m1 = m2 = m3 NDS Time(sec) E m1 = m2 = m3 NDS Time(sec) E

3 µ 281.7 1.365 10.7 3 µ 40.9 0.188 4.6
3 σ 230.1 1.272 3.6 3 σ 36.9 0.142 2.4
5 µ 6532.3 15.981 29.8 5 µ 408.5 1.719 12.1
5 σ 7981.8 9.138 13.7 5 σ 679.3 2.681 12
7 µ 46476.9 197.443 129.8 7 µ 419.4 4.472 21.6
7 σ 40377.4 179.128 79.9 7 σ 1006.1 5.569 35.4
9 µ 223409 1736.11 418.9 9 µ 155.4 16.752 10.4
9 σ 9438.3 2273.81 307.9 9 σ 310.9 8.286 5.5
11 µ 528015 5223.02 586.5 11 µ 141.6 93.402 31.2
11 σ 8810 5694.68 738.9 11 σ 116 92.053 24.9
13 µ 570925 18189 2507.9 13 µ 319.8 921.763 75.2
13 σ 643217 22344.1 3345.6 13 σ 213.9 677.844 49.4

d = 0.50 d = 1.00

3 µ 5.8 0.043 2.4 3 µ 6.2 0.058 2.6
3 σ 4 0.029 2.0 3 σ 3 0.044 1.5
5 µ 18.8 0.225 2.9 5 µ 29 0.539 5.2
5 σ 13.3 0.180 1.9 5 σ 24.6 0.509 4.9
7 µ 44.6 4.510 9.4 7 µ 37.6 4.625 7.8
7 σ 27.1 4.932 5.7 7 σ 23.7 2.278 5.2
9 µ 115.2 46.908 26.4 9 µ 106.6 68.348 23.1
9 σ 35.5 32.283 8.6 9 σ 41.7 26.633 11.0
11 µ 232.4 330.787 54.2 11 µ 336.2 643.011 78.6
11 σ 148.4 209.451 32.2 11 σ 264.9 524.062 65.6
13 µ 468.2 1465.54 113.1 13 µ 572.6 3721.27 137.6
13 σ 349 1109.62 87.8 13 σ 388.1 2259.23 95.5

and CPLEX 6.0 library is used to solve mixed 0–1 linear problems. Computational
experiments are made on a SPARC station ULTRA 2 under Solaris 2.4-27.

In the following tables, the entries are the mean value µ and standard deviation
σ of the number of nodes NDS, computing CPU times in seconds (Time), and the
number of extreme equilibria |E| obtained on 10 randomly generated problems,
where the coefficients of the payoff matrices are drawn from a uniform distribution
over the real interval [0, 10]. Hence, 10 randomly generated problems are solved
after elimination of the strongly dominated strategies for each value of the payoff
matrices density parameter d: 1 and 0.5.

6.1. Bimatrix Games. The Eχ -MIP algorithm results are compared with
those of the EEE algorithm (Ref. 3). It is worth noticing that the Audet et al. (Ref.
3) results are all for problems with density equal to 1.

Table 2 shows that Eχ -MIP performs better than EEE on low-density prob-
lems. This appears to be due to the large number of nodes generaged by EEE when



370 JOTA: VOL. 129, NO. 3, JUNE 2006

the density decreases and the number of weakly dominated strategies increases.
However, on larger bimatrix games, with size from 5 × 5 to 14 × 14 and density
equal to 1 or 0.5, EEE is on the average faster than Eχ -MIP, the difference getting
more important when the problem size increases. This appears to be due to the
explosion of the computational time required to solve mixed integer programs.

6.2. Polymatrix Games. Tables 3 shows that, on 3-player polymatrix
games, such that m1 = m2 = m3, with size from 3 × 3 × 3 up to 13 × 13 × 13 and
density equal to 0.12, 0.25, 0.50, 1.00, the computing time of Eχ -MIP increases
exponentially.

Problems with density d = 0.12 appear to be harder to solve than those with
density d = 0.25; they have a larger number of extreme equilibria on the average.
Problems with density d = 0.5 appear to be easier to solve than those with density
d = 1; they have slightly less equilibria on the average.

7. Discussion

The algorithm Eχ -MIP proposed in this paper allows the complete enumer-
ation of the extreme equilibria of bimatrix and polymatrix games, using a mixed
0–1 linear programming formulation. Compared to the state-of-the-art algorithm
EEE (Ref. 3) on bimatrix games, Eχ -MIP finds the same set of equilibria, but
suffers from larger solution times. However, while Eχ -MIP permits, for the first
time, the enumeration of all the extreme equilibria of a polymatrix game with a
number of players n > 2, EEE cannot be extended directly to polymatrix games
because of its bilinear programming approach.
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