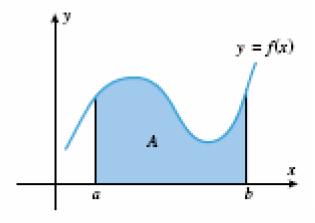
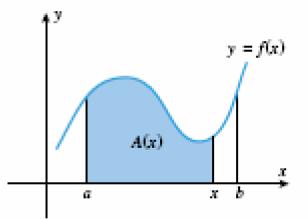
6.6 The Fundamental Theorem of Calculus



$$A = \int_{a}^{b} f(x) dx$$



$$A'(x) = f(x)$$
 $A(a) = 0, A(b) = A$

A(x) is antiderivative of f(x),

Then F(x) = A(x) + c

$$F(b) - F(a) = [A(b) + c] - [A(a) + c] = A(b) - A(a) = A - 0 = A$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

THEOREM (The Fundamental Theorem of Calculus, Part 1). If f is continuous on 6.6.1[a, b] and F is any antiderivative of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{2}$$

We can express (2) as
$$b$$

$$\int_{a}^{b} f(x)dx = F(x)$$

Example1 Evaluate

$$a) \int_{0}^{\ln 2} 5e^{x} dx$$

a)
$$\int_{0}^{\ln 2} 5e^{x} dx$$
 b) $\int_{-1/2}^{1/2} \frac{1}{\sqrt{1-x^{2}}} dx$ $\int_{2}^{0} 3x^{2} dx$

$$\int_{2}^{0} 3x^{2} dx$$

Example2

Evaluate
$$\int_{-3}^{2} f(x)dx$$

$$f(x) = \begin{cases} \sqrt{x+1} & x \ge 0 \\ \frac{1}{x+4} & x < 0 \end{cases}$$

Total Area

If f is a continuous function on the interval [a, b], then we define the **total area** between the curve y=f(x) and the interval [a, b] to be

total area = $\int_{a}^{b} |f(x)| dx$

Example3 Find the total area between the curve $y = 1-x^2$ And the *x-axis* over the interval [0, 2].

6.6.2 THEOREM (The Mean-Value Theorem for Integrals). If f is continuous on a closed interval [a,b], then there is at least one number x^* in [a,b] such that

$$\int_{a}^{b} f(x) dx = f(x^{*})(b - a) \tag{7}$$

Note: $f(x^*)$ called Average value

Example 4

Find x * in[1,3] for $f(x) = x^2 - 1$ which satisfies the MVT for integrals.

6.6.3 THEOREM (The Fundamental Theorem of Calculus, Part 2). If f is continuous on an interval I, then f has an antiderivative on I. In particular, if a is any number in I, then the function F defined by

$$F(x) = \int_{a}^{x} f(t) dt$$

is an antiderivative of f on I; that is, F'(x) = f(x) for each x in I, or in an alternative notation

$$\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = f(x) \tag{10}$$

Example 5

$$\frac{d}{dx} \begin{bmatrix} \int_{2}^{x} t^{2} dt \\ 2 \end{bmatrix} = x^{2} \qquad \frac{d}{dx} \begin{bmatrix} \int_{1}^{x} \frac{\sin t}{t} dt \\ 1 \end{bmatrix} = \frac{\sin x}{x}$$

HW
$$\frac{d}{dx} \begin{bmatrix} h(x) \\ \int g(x) f(t) dt \end{bmatrix} = ?????$$

Note:

a)
$$\int_{0}^{a} f(x)dx = 0$$
 if $f(x)$ is odd

b)
$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \text{ if } f(x) \text{ is even}$$