10.5 The Comparison, Ratio, and Root Tests

THEOREM (The Comparison Test).  Let S i, ag and ¥ i_, by be series with non-
negative terms and suppose that
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@) Ifthe “bigeer series” b, converges, then the “smaller series” Zay also converges.
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(b) If the “smaller series” Lag diverpges, then the “bigger series” Lby also diverges.

» Guess at whether the series »  u converges or diverges.

¢ Find a series that proves the guess to be correct. That is, if the guess is divergence, we
must find a divergent series whose terms are “smaller” than the corresponding terms of
3 g, and if the guess is convergence, we must find a convergent series whose terms
are “bigger” than the corresponding terms of 3 ug.

INFORMAL PRINCIPLE. Constant summands in the denominator of u, can
usually be deleted without affecting the convergence or divergence of the series.

INFORMAL PRINCIPLE. [If a polynomial in k appears as a factor in the numer-
ator or denominator of ug, all but the leading term in the polynomial can usually be
discarded without affecting the convergence or divergence of the series.



Example 1

Use the comparison test to determine whether the following
series converge or diverge.
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THEOREM (The Limit Comparison Test).  Let Z g and E by be series with positive

terms and suppose that
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If p is finite and p = 0, then the series both converge or both diverge.

Example 2
Use the limit comparison test to determine whether the following
series converge or diverge.
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THEOREM (The Ratio Test).  Let > ug be aseries with positive terms and suppose
that
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(a) If p = 1, the series converges.
(BY Ifp = 1 orp = 4w, the series diverges.

(c) If p = 1, the series may converge or diverge, so that another test must be tried.

Example 3

Use the ratio test to determine whether the following series
converge or diverge.
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THEOREM (The Root Test).  Let 3 uy be a series with positive terms and suppose
that
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(@) [Ifp < 1, the series converges.
(b)) Ifp = 1 or p= 4w, the series diverges.

(c) Ifp =1, the series may converge or diverge, so that another test must be tried.

Example 4
Determine whether the following series converge or diverge.
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