Chapter 14 \& 15 Homework
 Due Wednesday, May 9, 2012

Remark: No late submission will be accepted.

Q1:

From your textbook do the following problems:

14.43, 15.5, 15.9.

Note:All computer outputs must be included, but you need to clearly indicate the answer for each part, i.e. having the computer output alone will not be enough.

Q2:
A publishing company is attempting to develop a model that it can use to help predict textbook sales for books it is considering for future publication. The marketing department has collected data on six variables from a random sample of 15 books. These variables are as follows:

Y: Number of Volumes sold (1000's).
X1: Number of Pages.
X2: Number of competing books.
X3: Advertising Budget (\$1000's).
X4: Age of the Author.
X5: Production Expenditures ($\$ 1000$'s).
X6: Number of Reviewers.
In addition to these variables, the type of book sold is incorporated in the model. The company produces only three types of books which are: Chemistry, Statistics, or Physics, as follows:

X7: $1=$ If a Biology book, 0 otherwise.
X8: $1=$ If a Statistics book, 0 otherwise.

Regression Analysis: Y versus X1, X2, X3, X4, X5, X6, X7, X8

```
The regression equation is
Y = - 104 + 0.123 X1 - 0.55 X2 + 1.16 X3 + 1.34 X4 + 0.58 X5 +
1.61 X6 - 20.9 X7 - 29.6 X8
\begin{tabular}{lrrrrr} 
Predictor & Coef & SE Coef & T & P & VIF \\
Constant & -103.69 & 37.57 & -2.76 & 0.033 & \\
X1 & 0.12302 & 0.09192 & 1.34 & 0.229 & 8.4 \\
X2 & -0.553 & 2.864 & -0.19 & 0.853 & 4.0 \\
X3 & 1.1649 & 0.7447 & 1.56 & 0.169 & 4.4 \\
X4 & 1.3393 & 0.7707 & 1.74 & 0.133 & 2.0 \\
X5 & 0.580 & 1.011 & 0.57 & 0.587 & 15.5 \\
X6 & 1.613 & 6.837 & 0.24 & 0.821 & 5.8 \\
X7 & -20.95 & 19.09 & -1.10 & 0.315 & 2.7 \\
X8 & -29.56 & 16.21 & -1.82 & 0.118 & 1.6
\end{tabular}
S = 22.27 R-Sq = 91.9% R-Sq(adj) = 81.0%
```


From the Minitab outputs above, answer the following questions:
a. How much of the total variation in the number of volumes sold is explained by the variation in these six explanatory variables?
b. Would you conclude that the model is significant at 2.5% level of significance? Explain in detail.
c. Which of the predictors can be concluded to be significant in explaining the variation in the number of the volumes sold? Explain. Using $\alpha=0.05$.
d. Find 99% C.I. for the regression coefficient of Advertising Budget, and interpret this C.I.
e. Based on your solution in part (e), can you conclude that the Advertising Budget is significant? Why?
f. Estimate the number of volumes sold for a book with each of the following given information and indicate which book the predicted value is for

1) $(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{X} 8)=(204,3,30000,50,34000,6,1,1)$	
Which book (Biology, Statistics, Physics, or not possible)?	
2) $(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{X} 8)=(204,3,30000,50,34000,6,0.5,1)$	
Which book (Biology, Statistics, Physics, or not possible)?	
3$)(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{X} 8)=(204,3,30000,50,34000,6,0,0)$	
Which book (Biology, Statistics, Physics, or not possible)?	

g. Find a 99% C.I. for the number of volumes sold for a book with 204 pages, 3 competing books, $\$ 30,000$ advertising budget, 50 years old of the author, $\$ 34,000$ production expenses, 6 reviewers, and it is a Physics book.

Q2:
The following data ANOVA summary table is for a multiple regression model with two independent variables

Source	DF	SS	MS	F
Regression	2	60		
Residual Error	$\frac{18}{20}$	180		
Total				

a. Determine the Sum of Square Error (SSE), Mean Square Regression (MSR) and the Mean Square Error (MSE).
b. Compute the overall $\mathrm{F}_{\text {stat }}$ test statistic
c. Determine whether there is a significant relationship between Y and the two independent variables at the 0.05 significance level.
d. Compute the coefficient of multiple determination, R^{2}, and interpret its meaning.
e. Compute the adjusted R^{2}.
f. Compute the standard error of estimate S_{ε}.

Q3:
The following regression equation is obtained for a sample of $n=25$:

$$
\hat{y}_{i}=5+3 X_{1 i}+1.5 X_{1 i}^{2}
$$

a. Predict Y for $X_{1}=2$
b. Suppose that the computed $t_{\text {stat }}$ test statistic for the quadratic regression coefficient is 2.35. At the 5% level of significance, is there evidence that the quadratic model is better than the linear model?
c. Suppose that the computed $t_{\text {stat }}$ test statistic for the quadratic regression coefficient is 1.17. At the 5% level of significance, is there evidence that the quadratic model is better than the linear model?

Q4:
A publishing company is attempting to develop a model that it can use to help predict textbook sales for books it is considering for future publication. The marketing department has collected data on six variables from a random sample of 15 books. These variables are as follows:

Y: Number of Volumes sold (1000's).
X1: Number of Pages.
X2: Number of competing books.
X3: Advertising Budget (\$1000's).
X4: Age of the Author.
X5: Production Expenditures ($\$ 1000$'s).
X6: Number of Reviewers.

Correlations: Y, X1, X2, X3, X4, X5, X6

	Y	X 1	X 2	X 3	X 4	X 5
$\mathrm{X1}$	0.622					
	0.013					

X2	0.355	0.501				
	0.194	0.057				
X3	0.62	0.091	0.384			
	0.014	0.746	0.158			
X4	0.485	-0.019	-0.113	0.265		
	0.067	0.947	0.687	0.34		
X5	0.896	0.67	0.27	0.539	0.438	
	0	0.006	0.331	0.038	0.103	
X6	0.66	0.377	0.291	0.355	0.528	0.737
	0.007	0.166	0.292	0.194	0.043	0.002

Best Subsets Regression: Y versus X1, X2, X3, X4, X5, X6

Response is Y										
					X	X	X	X	X	X
Vars	R-Sq	R-Sq(adj)	C-p	S	1	2	3	4	5	6
1	80.2	78.7	1.4	23.600					X	
1	43.6	39.3	24.4	39.868						X
2	82.9	80.0	1.7	22.854			X		X	
2	81.6	78.6	2.5	23.676		X			X	
3	84.1	79.8	3.0	23.003	X		X		X	
3	83.8	79.4	3.1	23.199			X	X	X	
4	87.2	82.1	3.0	21.640	X		X	X	X	
4	85.0	79.0	4.4	23.456		X	X	X	X	
5	87.2	80.1	5.0	22.799	X	X	X	X	X	
5	87.2	80.1	5.0	22.808	X		X	X	X	X
6	87.3	77.7	7.0	24.166	X	X	X	X	X	X

From the Minitab output above, answer the following:
a. Do you think that Number of pages and Production expenditures are directly (positively) related? Test using 2.5% level of significance.
b. If you are going to fit a regression model using the forward selection method, what is the first predictor to be used? Why?
c. What is the best model to be selected? Justify your selection.

