Basic Business Statistics $11^{\text {th }}$ Edition

Chapter 15

Multiple Regression Model Building

Learning Objectives

In this chapter, you learn:

- To use quadratic terms in a regression model
- To use transformed variables in a regression model
- To measure the correlation among the independent variables
- To build a regression model using either the stepwise or best-subsets approach
- To avoid the pitfalls involved in developing a multiple regression model

Nonlinear Relationships

- The relationship between the dependent variable and an independent variable may not be linear
- Can review the scatter plot to check for nonlinear relationships
- Example: Quadratic model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{1 i}^{2}+\varepsilon_{i}
$$

- The second independent variable is the square of the first variable

Quadratic Regression Model

Model form:

$$
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{1 \mathrm{i}}+\beta_{2} \mathrm{X}_{\mathrm{ii}}^{2}+\varepsilon_{\mathrm{i}}
$$

- where:
$\beta_{0}=Y$ intercept
$\beta_{1}=$ regression coefficient for linear effect of X on Y $\beta_{2}=$ regression coefficient for quadratic effect on Y $\varepsilon_{i}=$ random error in Y for observation i

Quadratic Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{1 i}^{2}+\varepsilon_{i}
$$

Quadratic models may be considered when the scatter plot takes on one of the following shapes:

$$
\begin{aligned}
& \beta_{1}=\text { the coefficient of the linear term } \\
& \beta_{2}=\text { the coefficient of the squared term }
\end{aligned}
$$

Testing the Overall Quadratic Model

- Estimate the quadratic model to obtain the regression equation:

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{\mathrm{il}}+\mathrm{b}_{2} \mathrm{X}_{1 \mathrm{il}}^{2}
$$

- Test for Overall Relationship
$\mathrm{H}_{0}: \beta_{1}=\beta_{2}=0$ (no overall relationship between X and Y) $H_{1}: \beta_{1}$ and/or $\beta_{2} \neq 0$ (there is a relationship between X and Y)

$$
\mathrm{F}_{\mathrm{STAT}}=\frac{\mathrm{MSR}}{\mathrm{MSE}}
$$

Testing for Significance: Quadratic Effect

- Testing the Quadratic Effect
- Compare quadratic regression equation

$$
Y_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{1 i}^{2}
$$

with the linear regression equation

$$
\mathrm{Y}_{\mathrm{i}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1 \mathrm{i}}
$$

Testing for Significance: Quadratic Effect

- Testing the Quadratic Effect
- Consider the quadratic regression equation

$$
Y_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{1 i}^{2}
$$

Hypotheses

$\mathrm{H}_{0}: \beta_{2}=0$ (The quadratic term does not improve the model)
$H_{1}: \beta_{2} \neq 0$ (The quadratic term improves the model)

Testing for Significance: Quadratic Effect

- Testing the Quadratic Effect

Hypotheses

$\mathrm{H}_{0}: \beta_{2}=0$ (The quadratic term does not improve the model)
$\mathrm{H}_{1}: \beta_{2} \neq 0$ (The quadratic term improves the model)

- The test statistic is

$$
\mathrm{t}_{\text {STAT }}=\frac{\mathrm{b}_{2}-\beta_{2}}{\mathrm{~S}_{\mathrm{b}_{2}}}
$$

$$
\text { d.f. }=\mathrm{n}-3
$$

where:
$\mathrm{b}_{2}=$ squared term slope coefficient
$\beta_{2}=$ hypothesized slope (zero)
$\mathrm{S}_{\mathrm{b}_{2}}=$ standard error of the slope

Testing for Significance: Quadratic Effect

- Testing the Quadratic Effect

Compare r^{2} from simple regression to adjusted r^{2} from the quadratic model

- If adj. r^{2} from the quadratic model is larger than the r^{2} from the simple model, then the quadratic model is likely a better model

Example: Quadratic Model

Purity	Filter Time
3	1
7	2
8	3
15	5
22	7
33	8
40	10
54	12
67	13
70	14
78	15
85	15
87	16
99	17

Purity increases as filter time increases:

Example: Quadratic Model

- Simple regression results:
$\hat{Y}=-11.283+5.985$ Time

	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value
Intercept	-11.28267	3.46805	-3.25332	0.00691
Time	5.98520	0.30966	19.32819	$2.078 \mathrm{E}-10$

t statistic, F statistic, and r^{2} are all high, but the residuals are not random:

Regression Statistics	
R Square	0.96888
Adjusted R Square	0.96628
Standard Error	6.15997

\boldsymbol{F}	Significance \boldsymbol{F}
373.57904	$2.0778 \mathrm{E}-10$

Example: Quadratic Model in Excel

- Quadratic regression results:

$$
\hat{Y}=1.539+1.565 \text { Time }+0.245(\text { Time })^{2}
$$

	Coefficients	Standard Error	\boldsymbol{t} Stat	\boldsymbol{P}-value
Intercept	1.53870	2.24465	0.68550	0.50722
Time	1.56496	0.60179	2.60052	0.02467
Time-squared	0.24516	0.03258	7.52406	$1.165 \mathrm{E}-05$

Regression Statistics		\boldsymbol{F}	Significance \boldsymbol{F}
R Square	0.99494	0.99402	
Adjusted R Square	2.59513		$2.368 \mathrm{E}-13$
Standard Error			

The quadratic term is significant and improves the model: adj. r^{2} is higher and $S_{Y X}$ is lower, residuals are now random

Example: Quadratic Model in Minitab

Quadratic regression results:

$$
\mathrm{Y}=1.539+1.565 \text { Time }+0.245(\text { Time })^{2}
$$

The regression equation is
Purity $=1.54+1.56$ Time +0.245 Time Squared

Predictor	Coef	SE Coef	T	P
Constant	1.5390	2.24500	0.69	0.507
Time	1.5650	0.60180	2.60	0.025
Time Squared	0.24516	0.03258	7.52	0.000

$S=2.59513 \quad R-S q=99.5 \% \quad R-S q(a d j)=99.4 \%$

The quadratic term is significant and improves the model: adj. r^{2} is higher and $S_{Y X}$ is lower, residuals are now random

Using Transformations in Regression Analysis

Idea:

- non-linear models can often be transformed to a linear form
- Can be estimated by least squares if transformed
- transform X or Y or both to get a better fit or to deal with violations of regression assumptions
- Can be based on theory, logic or scatter plots

The Square Root Transformation

- The square-root transformation

$$
Y_{i}=\beta_{0}+\beta_{1} \sqrt{X_{1 i}}+\varepsilon_{i}
$$

- Used to
- overcome violations of the constant variance assumption
- fit a non-linear relationship

The Square Root Transformation

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\varepsilon_{i}
$$

$$
Y_{i}=\beta_{0}+\beta_{1} \sqrt{X_{1 i}}+\varepsilon_{i}
$$

- Shape of original relationship
- Relationship when transformed

The Log Transformation

The Multiplicative Model:

- Original multiplicative model
- Transformed multiplicative model

$$
Y_{i}=\beta_{0} X_{1 i}^{\beta_{1}} \varepsilon_{i} \quad \Longrightarrow \log Y_{i}=\log \beta_{0}+\beta_{1} \log X_{1 i}+\log \varepsilon_{\mathrm{i}}
$$

The Exponential Model:

- Original multiplicative model
- Transformed exponential model

$$
Y_{i}=e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}} \varepsilon_{i} \quad \leadsto \ln Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ln \varepsilon_{i}
$$

Interpretation of coefficients

For the multiplicative model:

$$
\log Y_{i}=\log \beta_{0}+\beta_{1} \log X_{1 i}+\log \varepsilon_{i}
$$

- When both dependent and independent variables are logged:
- The coefficient of the independent variable X_{k} can be interpreted as: a 1 percent change in X_{k} leads to an estimated b_{k} percentage change in the average value of Y. Therefore b_{k} is the elasticity of Y with respect to a change in X_{k}.

Collinearity

- Collinearity: High correlation exists among two or more independent variables
- This means the correlated variables contribute redundant information to the multiple regression model

Collinearity

- Including two highly correlated independent variables can adversely affect the regression results
- No new information provided
- Can lead to unstable coefficients (large standard error and low t-values)
- Coefficient signs may not match prior expectations

Some Indications of Strong Collinearity

- Incorrect signs on the coefficients
- Large change in the value of a previous coefficient when a new variable is added to the model
- A previously significant variable becomes nonsignificant when a new independent variable is added
- The estimate of the standard deviation of the model increases when a variable is added to the model

Detecting Collinearity (Variance Inflationary Factor)

VIF $_{j}$ is used to measure collinearity:

$$
\mathrm{VIF}_{\mathrm{j}}=\frac{1}{1-\mathrm{R}_{\mathrm{j}}^{2}}
$$

where R^{2}; is the coefficient of determination of variable X_{j} with all other X variables

If $\mathrm{VIF}_{\mathrm{j}}>5, \mathrm{X}_{\mathrm{j}}$ is highly correlated with the other independent variables

Example: Pie Sales

Week	Pie Sales	Price $(\$)$	Advertising $(\$ 100 \mathrm{~s})$
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Recall the multiple regression equation of chapter 14:

$$
\begin{aligned}
\text { Sales }= & \left.b_{0}+b_{1} \text { (Price }\right) \\
& +b_{2}(\text { Advertising })
\end{aligned}
$$

Detecting Collinearity in Excel using PHStat

PHStat / regression / multiple regression ...

Check the "variance inflationary factor (VIF)" box

Regression Analysis Price and all other X	
Regression Statistics	
Multiple R	0.030438
R Square	0.000926
Adjusted R Square	-0.075925
Standard Error	1.21527
Observations	15
VIF	$\mathbf{1 . 0 0 0 9 2 7}$

Output for the pie sales example:

- Since there are only two independent variables, only one VIF is reported

VIF is <5

There is no evidence of collinearity between Price and Advertising

Detecting Collinearity in Minitab

Predictor	Coef	SE Coef	T	P	VIF
Constant	306.50	114.3	2.68	0.020	
Price	-24.98	10.83	-2.31	0.040	1.001
Advertising	74.13	25.97	2.85	0.014	1.001

- Output for the pie sales example:
- Since there are only two independent variables, the VIF reported is the same for each variable
- VIF is <5
- There is no evidence of collinearity between Price and Advertising

Model Building

- Goal is to develop a model with the best set of independent variables
- Easier to interpret if unimportant variables are removed
- Lower probability of collinearity
- Stepwise regression procedure
- Provide evaluation of alternative models as variables are added and deleted
- Best-subset approach
- Try all combinations and select the best using the highest adjusted r^{2} and lowest standard error

Stepwise Regression

- Idea: develop the least squares regression equation in steps, adding one independent variable at a time and evaluating whether existing variables should remain or be removed
- The coefficient of partial determination is the measure of the marginal contribution of each independent variable, given that other independent variables are in the model

Best Subsets Regression

- Idea: estimate all possible regression equations using all possible combinations of independent variables
- Choose the best fit by looking for the highest adjusted r^{2} and lowest standard error

> Stepwise regression and best subsets regression can be performed using PHStat

Alternative Best Subsets Criterion

- Calculate the value C_{p} for each potential regression model
- Consider models with C_{p} values close to or below $\mathrm{k}+1$
- k is the number of independent variables in the model under consideration

Alternative Best Subsets Criterion

- The C_{p} Statistic

$$
C_{p}=\frac{\left(1-R_{k}^{2}\right)(n-T)}{1-R_{T}^{2}}-(n-2(k+1))
$$

Where $k=$ number of independent variables included in a particular regression model
T = total number of parameters to be estimated in the full regression model
$R_{k}^{2}=$ coefficient of multiple determination for model with k independent variables
$R_{T}^{2}=$ coefficient of multiple determination for full model with all T estimated parameters

Steps in Model Building

1. Compile a listing of all independent variables under consideration
2. Estimate full model and check VIFs
3. Check if any VIFs > 5

- If no VIF > 5, go to step 4
- If one VIF > 5 , remove this variable
- If more than one, eliminate the variable with the highest VIF and go back to step 2
4.Perform best subsets regression with remaining variables ...

Steps in Model Building

5. List all models with C_{p} close to or less than (k +1)
6. Choose the best model

- Consider parsimony
- Do extra variables make a significant contribution?

7. Perform complete analysis with chosen model, including residual analysis
8. Transform the model if necessary to deal with violations of linearity or other model assumptions
9. Use the model for prediction and inference

Model Building Flowchart

Pitfalls and Ethical Considerations

To avoid pitfalls and address ethical considerations:

- Understand that interpretation of the estimated regression coefficients are performed holding all other independent variables constant
- Evaluate residual plots for each independent variable
- Evaluate interaction terms

Additional Pitfalls and Ethical Considerations

To avoid pitfalls and address ethical considerations:

- Obtain VIFs for each independent variable before determining which variables should be included in the model
- Examine several alternative models using bestsubsets regression
- Use other methods when the assumptions necessary for least-squares regression have been seriously violated

Chapter Summary

- Developed the quadratic regression model
- Discussed using transformations in regression models
- The multiplicative model
- The exponential model
- Described collinearity
- Discussed model building
- Stepwise regression
- Best subsets
- Addressed pitfalls in multiple regression and ethical considerations

