## Basic Business Statistics $11^{\text {th }}$ Edition

## Chapter 14

## Introduction to Multiple Regression

## Learning Objectives

## In this chapter, you learn:

- How to develop a multiple regression model
- How to interpret the regression coefficients
- How to determine which independent variables to include in the regression model
- How to determine which independent variables are more important in predicting a dependent variable
- How to use categorical variables in a regression model
- How to predict a categorical dependent variable using logistic regression


## The Multiple Regression Model

Idea: Examine the linear relationship between 1 dependent $(\mathrm{Y})$ \& 2 or more independent variables $\left(\mathrm{X}_{\mathrm{i}}\right)$

Multiple Regression Model with k Independent Variables:


## Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with $\mathbf{k}$ independent variables:


> In this chapter we will use Excel or Minitab to obtain the regression slope coefficients and other regression summary measures.

## Multiple Regression Equation

Two variable model


## Example: 2 Independent Variables

- A distributor of frozen dessert pies wants to evaluate factors thought to influence demand
- Dependent variable: Pie sales (units per week)
- Independent variables: $\left\{\begin{array}{l}\text { Price (in \$) } \\ \text { Advertising (\$100's) }\end{array}\right.$
- Data are collected for 15 weeks



## Pie Sales Example

| Week | Pie <br> Sales | Price <br> (\$) | Advertising <br> (\$100s) |
| :---: | :---: | :---: | :---: |
| 1 | 350 | 5.50 | 3.3 |
| 2 | 460 | 7.50 | 3.3 |
| 3 | 350 | 8.00 | 3.0 |
| 4 | 430 | 8.00 | 4.5 |
| 5 | 350 | 6.80 | 3.0 |
| 6 | 380 | 7.50 | 4.0 |
| 7 | 430 | 4.50 | 3.0 |
| 8 | 470 | 6.40 | 3.7 |
| 9 | 450 | 7.00 | 3.5 |
| 10 | 490 | 5.00 | 4.0 |
| 11 | 340 | 7.20 | 3.5 |
| 12 | 300 | 7.90 | 3.2 |
| 13 | 440 | 5.90 | 4.0 |
| 14 | 450 | 5.00 | 3.5 |
| 15 | 300 | 7.00 | 2.7 |

Multiple regression equation:

$$
\begin{aligned}
\text { Sales }= & \left.b_{0}+b_{1} \text { (Price }\right) \\
& +b_{2}(\text { Advertising })
\end{aligned}
$$

Chap 14-7

## Excel Multiple Regression Output

| Regression Statistics |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiple R | 0.72213 |  |  |  |  |  |
| R Square | 0.52148 |  |  |  |  |  |
| Adjusted R Square | 0.44172 |  |  |  |  |  |
| Standard Error | 47.46341 | Sales $=306.526-24.975$ (Prưe) +74.131 (Advertising) |  |  |  |  |
| Observations | 15 |  |  |  | Significance $F$ | Upper 95\% |
| ANOVA | df | ss | MS |  |  |  |
| Regression | $2$ | 29460.027 | 14730.013 | 6.53861 | 0.01201 |  |
| Residual | 12 | 27033.306 | 2252.776 |  |  |  |
| Total | 14 | 56493.333 |  |  |  |  |
|  |  |  |  |  |  |  |
|  | Coefficients | Standard Error | $t$ Stat | $P$-value | Lower 95\% |  |
| Intercept | 306.52619 | 114.25389 | 2.68285 | 0.01993 | 57.58835 | 555.46404 |
| Price | -24.97509 | 10.83213 | -2.30565 | 0.03979 | -48.57626 | -1.37392 |
| Advertising | 74.13096 | 25.96732 | 2.85478 | 0.01449 | 17.55303 | 130.70888 |

## Minitab Multiple Regression Output




## Using The Equation to Make Predictions

## Predict sales for a week in which the selling price is $\$ 5.50$ and advertising is $\$ 350$ :



## Predictions in Excel using PHStat

- PHStat | regression | multiple regression ...

|  | A | B | c | D | Multiple Regression $\times$ \| ${ }^{\text {a }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Week | Pie Sales | Price | Advertising |  |  |
| 2 | 1 | 350 | 5.5 | 3.3 | - Data |  |
| 3 | 2 | 460 | 7.5 | 3.3 |  |  |
| 4 | 3 | 350 | 8 | 3 | X Variables Cell Range: ${ }_{\text {S }}$ Sheet11\$¢\$1:\$0\$16 |  |
| 5 | 4 | 430 | 8 | 4.5 | V First cells in both ranges contain label |  |
| 6 <br> 7 | 5 | $\begin{array}{r}350 \\ 380 \\ \hline\end{array}$ | 6.8 7.5 | 3 4 | Confidence level for regression coefficients: $\quad 90$ |  |
| 8 | 7 | 430 | 4.5 | 3 |  |  |
| 9 | 8 | 470 | 6.4 | 3.7 | Regression Tool Output Options |  |
| 10 | 9 | 450 | 7 | 3.5 | V Regression Statistics Table |  |
| 11 | 10 | 490 | 5 | 4 | - ${ }^{\text {anOVA }}$ and Coefficients Table |  |
| 12 | 11 | 340 | 7.2 | 3.5 | - AnOVA and Coefficients Table |  |
| 13 | 12 | 300 | 7.9 | 3.2 | $\Gamma$ Residuals Table |  |
| 14 | 13 | 440 | 5.9 | 4 | $\Gamma$ Residual Plots |  |
| 15 | 14 | 450 | 5 | 3.5 |  |  |
| 16 | 15 | 300 | 7 | 2.7 | Output Options |  |
| 17 |  |  |  |  | Title: | Check the |
| 18 |  |  |  |  | $\lceil$ Durbin-Watson Statistic | "confidence and |
| 19 |  |  |  |  | $\Gamma$ coefficients of Partial Determination | confidence and |
| 21 |  |  |  |  |  | prediction interval |
| 22 |  |  |  |  | $\checkmark$ Confidence and Prediction Interval Estimates | estimates" box |
| 23 <br> 24 |  |  |  |  | Eontidence eveli ion meervalestimates: $195 \%$ |  |
| 25 |  |  |  |  |  |  |
| 26 |  |  |  |  | Help $\quad$ OK Cancel |  |
|  | c Busin | ss Statistics, | © 20 | Prentice-Hall, |  | Chap 14-12 |

## Predictions in PHStat



## Coefficient of Multiple Determination

- Reports the proportion of total variation in $Y$ explained by all $X$ variables taken together


## $r^{2}=\frac{\text { SSR }}{S S T}=\frac{\text { regressionsum of squares }}{\text { total sumof squares }}$

| Regression Statistics |  | $\mathrm{r}^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{29460.0}{56493.3}=.52148$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiple R | 0.72213 |  |  |  |  |  |
| R Square | 0.52148 |  |  |  |  | 第 |
| Adjusted R Square | 0.44172 | 52.1\% of the variation in pie sales is explained by the variation in price and advertising |  |  |  |  |
| Standard Error | 47.46341 |  |  |  |  |  |
| Observations | 15 |  |  |  |  |  |
|  |  |  |  |  |  |  |
| ANOVA | df | ss | MS | $F$ | Significance $F$ |  |
| Regression | 2 | 29460.027 | 14730.013 | 6.53861 |  |  |
| Residual | 12 | 27033.306 | 2252.776 |  | 0.01201 |  |
| Total | 14 | 56493.333 |  |  |  |  |
|  | Coefficients | Standard Error | $t$ Stat | $P$-value | Lower 95\% | Upper 95\% |
| Intercept | 306.52619 | 114.25389 | 2.68285 | 0.01993 | 57.58835 | 555.46404 |
| Price | -24.97509 | 10.83213 | -2.30565 | 0.03979 | -48.57626 | -1.37392 |
| Advertising | 74.13096 | 25.96732 | 2.85478 | 0.01449 | 17.55303 | 130.70888 |

## Multiple Coefficient of Determination In Minitab

The regression equation is
Sales = 307-25.0 Price + 74.1 Advertising
Predictor Coef SE Coef T P
Constant $306.50114 .30 \quad 2.68 \quad 0.020$
$\begin{array}{lllll}\text { Price } & -24.98 & 10.83 & -2.31 & 0.040\end{array}$
$\begin{array}{lllll}\text { Advertising } & 74.13 & 25.97 & 2.85 & 0.014\end{array}$
$S=47.4634 \quad R-S q=52.1 \% \quad R-S q(a d j)=44.2 \%$
Analysis of Variance
Source

Residual Error $12270332258^{\circ}{ }^{*}$
Total
1456493

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..
Chap 14-17

## Adjusted r${ }^{2}$

- $r^{2}$ never decrease when a new $X$ variable is added to the model
- This can be a disadvantage when comparing models
- What is the net effect of adding a new variable?
- We lose a degree of freedom when a new $X$ variable is added
- Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?


## Adjusted $\mathrm{r}^{2}$

(continued)

- Shows the proportion of variation in $Y$ explained by all $X$ variables adjusted for the number of $X$ variables used

$$
r_{a d j}^{2}=1-\left[\left(1-r^{2}\right)\left(\frac{n-1}{n-k-1}\right)\right]
$$

(where $\mathrm{n}=$ sample size, $\mathrm{k}=$ number of independent variables)

- Penalize excessive use of unimportant independent variables
- Smaller than $r^{2}$
- Useful in comparing among models


## Adjusted $\mathrm{r}^{2}$ in Excel

| Regression Statistics |  | $r_{\mathrm{adj}}^{2}=.44172$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiple R | $0.72213$ |  |  |  |  |  |
| R Square | $0.52148$ | 44.2\% of the variation in pie sales is |  |  |  |  |
| Adjusted R Square | 0.44172 |  |  |  |  |  |  |  |  |
| Standard Error | 47.46341 | explained by the variation in price and |  |  |  |  |
| Observations | 15 | advertising, taking into account the sample size and number of independent variables |  |  |  |  |
| ANOVA | df | SS | MS |  |  |  | F | Significance F |  |
| Regression | 2 | 29460.027 | 14730.013 | 6.53861 | 0.01201 |  |
| Residual | 12 | 27033.306 | 2252.776 |  |  |  |
| Total | 14 | 56493.333 |  |  |  |  |
|  | Coefficients | Standard Error | $t$ Stat | $P$-value | Lower 95\% | Upper 95\% |
| Intercept | 306.52619 | 114.25389 | 2.68285 | 0.01993 | 57.58835 | 555.46404 |
| Price | -24.97509 | 10.83213 | -2.30565 | 0.03979 | -48.57626 | -1.37392 |
| Advertising | 74.13096 | 25.96732 | 2.85478 | 0.01449 | 17.55303 | 130.70888 |

## Adjusted $r^{2}$ in Minitab

| The regression equation is | $\mathrm{r}_{\mathrm{adj}}^{2}=.44172$ |
| :---: | :---: |
| Sales = 307-25.0 Price + 74.1 Advertising | 7 |
| Predictor Coef SE Coef T P |  |
| Constant 306.50114 .302 .680 .020 |  |
| Price $\begin{array}{llllll} & -24.98 & 10.83 & -2.31 & 0.040\end{array}$ |  |
| $\begin{array}{lllll}\text { Advertising } & 74.13 & 25.97 & 2.85 & 0.014\end{array}$ | 44.2\% of the variation in pie |
| $\mathrm{S}=47.4634 \mathrm{R}-\mathrm{Sq}=52.1 \% \quad \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=44.2 \%$ | sales is explained by the |
| Analysis of Variance | variation in price and advertising, taking into account |
| Source DF SS MS F P | the sample size and number of |
| Regression 229460147306.540 .012 | independent variables |
| Residual Error 12270332253 |  |

## Is the Model Significant?

- F Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the $X$ variables considered together and $Y$
- Use F-test statistic
- Hypotheses:

$$
\begin{array}{ll}
H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0 & \text { (no linear relationship) } \\
H_{1}: \text { at least one } \beta_{\mathrm{i}} \neq 0 & \text { (at least one independent } \\
& \text { variable affects } \mathrm{Y})
\end{array}
$$

## F Test for Overall Significance

- Test statistic:

$$
F_{S T A T}=\frac{M S R}{M S E}=\frac{\frac{S S R}{k}}{\frac{S S E}{n-k-1}}
$$

# where $F_{\text {STAT }}$ has numerator d.f. $=k$ and denominator d.f. $=(n-k-1)$ 



## F Test for Overall Significance In Minitab

The regression equation is
Sales = 307-25.0 Price + 74.1 Advertising

| Predictor | Coef |  | SE Coef | T |
| :--- | ---: | ---: | :---: | :---: |
| P |  |  |  |  |
| Constant | 306.50 | 114.30 | 2.68 | 0.020 |
| Price | -24.98 | 10.83 | -2.31 | 0.040 |

$\begin{array}{lllll}\text { Advertising } & 74.13 & 25.97 & 2.85 & 0.014\end{array}$
$S=47.4634 \quad R-S q=52.1 \% \quad R-S q(a d j)=44.2 \%$
Analysis of Variance
Source DF SS MS
Regression $\quad 229460147306.540 .012$
Residual Error 12270332253
Total
With 2 and 12 degrees of freedom

P-value for the F Test

## F Test for Overall Significance

(continued)


## Test Statistic:

$\mathrm{F}_{\text {STAT }}=\frac{M S R}{M S E}=6.5386$

## Decision:

Since $F_{\text {STAT }}$ test statistic is in the rejection region ( $p$ value $<.05$ ), reject $\mathrm{H}_{0}$

## Conclusion:

There is evidence that at least one independent variable affects $\mathbf{Y}$

## Residuals in Multiple Regression

Two variable model


## Multiple Regression Assumptions

Errors (residuals) from the regression model:

$$
e_{i}=\left(Y_{i}-\hat{Y}_{i}\right)
$$

Assumptions:

- The errors are normally distributed
- Errors have a constant variance
- The model errors are independent


## Residual Plots Used in Multiple Regression

- These residual plots are used in multiple regression:
- Residuals vs. $\hat{Y}_{i}$
- Residuals vs. $X_{1 i}$
- Residuals vs. $\mathrm{X}_{2 \mathrm{i}}$
- Residuals vs. time (if time series data)

Use the residual plots to check for violations of regression assumptions

## Are Individual Variables Significant?

- Use t tests of individual variable slopes
- Shows if there is a linear relationship between the variable $\mathrm{X}_{\mathrm{j}}$ and Y holding constant the effects of other $X$ variables
- Hypotheses:
- $\mathrm{H}_{0}: \beta_{\mathrm{j}}=0$ (no linear relationship)
- $\mathrm{H}_{1}: \beta_{\mathrm{j}} \neq 0$ (linear relationship does exist between $X_{j}$ and $Y$ )


## Are Individual Variables Significant?

(continued)

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{\mathrm{j}}=0 \text { (no linear relationship) } \\
& \mathrm{H}_{1}: \beta_{\mathrm{j}} \neq 0 \quad \text { (linear relationship does exist } \\
& \quad \text { between } X_{j} \text { and } Y \text { ) }
\end{aligned}
$$

## Test Statistic:

$$
t_{S T A T}=\frac{b_{j}-0}{S_{b_{j}}} \quad(\mathrm{df}=\mathrm{n}-\mathrm{k}-1)
$$

## Are Individual Variables Significant? Excel Output

(continued)


# Are Individual Variables Significant? Minitab Output 

The regression equation is
Sales = 307-25.0 Price + 74.1 Advertising
Predictor Coef SE Coef T P
$\begin{array}{lllll}\text { Constant } & 306.50 & 114.30 & 2.68 & 0.020\end{array}$
$\begin{array}{lllll}\text { Price } & -24.98 & 10.83 & -2.31 & 0.040\end{array}$
$\begin{array}{llll}\text { Advertising } & 74.13 & 25.97 & 2.85,0.014\end{array}$
$\mathrm{S}=47.4634 \quad \mathrm{R}-\mathrm{Sq}=52.1 \% \quad \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=44.2 \%$
Analysis of Variance
t Stat for Price is $\mathrm{t}_{\text {STAT }}=-2.306$, with
p -value .0398
t Stat for Advertising is $\mathrm{t}_{\text {STAT }}=2.855$,
with p-value .0145

Source DF SS MS F P
Regression 229460147306.540 .012
Residual Error 12270332253
Total 1456493

## Inferences about the Slope: t Test Example

$H_{0}: \beta_{j}=0$
$H_{1}: \beta_{j} \neq 0$


From the Excel and Minitab output:
For Price $\mathrm{t}_{\text {STAT }}=-2.306$, with p -value .0398
For Advertising $\mathrm{t}_{\text {STAT }}=2.855$, with p -value .0145
The test statistic for each variable falls in the rejection region ( p -values < .05)

## Decision:

Reject $\mathrm{H}_{0}$ for each variable Conclusion:

There is evidence that both Price and Advertising affect pie sales at $\alpha=$. 05

## Confidence Interval Estimate for the Slope

Confidence interval for the population slope $\beta_{\mathrm{j}}$

$$
b_{j} \pm t_{\alpha / 2} S_{b_{j}} \quad \begin{gathered}
\text { where thas } \\
(\mathrm{n}-\mathrm{k}-1) \mathrm{d.f.}
\end{gathered}
$$

|  | Coefficients | Standard Error |
| :--- | ---: | ---: |
| Intercept | 306.52619 | 114.25389 |
| Price | -24.97509 | 10.83213 |
| Advertising | 74.13096 | 25.96732 |

Here, has
$(15-2-1)=12$ def.

Example: Form a 95\% confidence interval for the effect of changes in price $\left(X_{1}\right)$ on pie sales:

$$
-24.975 \pm(2.1788)(10.832)
$$

So the interval is (-48.576, -1.374)
(This interval does not contain zero, so price has a significant effect on sales)
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.. Chap 14-35

## Confidence Interval Estimate for the Slope

Confidence interval for the population slope $\beta_{\mathrm{j}}$

|  | Coefficients | Standard Error | $\ldots$ | Lower 95\% | Upper 95\% |
| :--- | ---: | ---: | :--- | ---: | ---: |
| Intercept | 306.52619 | 114.25389 | $\ldots$ | 57.58835 | 555.46404 |
| Price | -24.97509 | 10.83213 | $\ldots$ | -48.57626 | -1.37392 |
| Advertising | 74.13096 | 25.96732 | $\ldots$ | 17.55303 | 130.70888 |

Example: Excel output also reports these interval endpoints:
Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of $\$ 1$ in the selling price, holding the effect of price constant

## Testing Portions of the Multiple Regression Model

- Contribution of a Single Independent Variable $X_{j}$
$\operatorname{SSR}\left(\mathrm{X}_{\mathrm{j}} \mid\right.$ all variables except $\left.\mathrm{X}_{\mathrm{j}}\right)$
$=$ SSR (all variables) - SSR(all variables except $X_{j}$ )
- Measures the contribution of $\mathrm{X}_{\mathrm{j}}$ in explaining the total variation in Y (SST)


## Testing Portions of the Multiple Regression Model

Contribution of a Single Independent Variable $\mathrm{X}_{\mathrm{j}}$, assuming all other variables are already included (consider here a 2 -variable model):

```
SSR(X1 | X )
    = SSR (all variables) - SSR(X ( 
```

From ANOVA section of regression for

$$
\hat{\mathrm{Y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}
$$

From ANOVA section of regression for

$$
\hat{\mathrm{Y}}=\mathrm{b}_{0}+\mathrm{b}_{2} \mathrm{X}_{2}
$$

Measures the contribution of $X_{1}$ in explaining SST

## The Partial F-Test Statistic

- Consider the hypothesis test:
$\mathrm{H}_{0}$ : variable $X_{j}$ does not significantly improve the model after all
other variables are included
$\mathrm{H}_{1}$ : variable $X_{j}$ significantly improves the model after all other
variables are included
- Test using the F-test statistic: (with 1 and $n-k-1$ d.f.)

$$
F_{\text {STAT }}=\frac{\text { SSR }\left(\mathrm{X}_{\mathrm{j}} \mid \text { all variablesexcept } \mathrm{j}\right)}{\mathrm{MSE}}
$$

## Testing Portions of Model: Example

Example: Frozen dessert pies

| Test at the $\alpha=.05$ level |
| :--- |
| to determine whether |
| the price variable |
| significantly improves |
| the model given that |
| advertising is included |
|  |



## Testing Portions of Model: Example

(continued)
$\mathrm{H}_{0}: \mathrm{X}_{1}$ (price) does not improve the model
$\quad$ with $\mathrm{X}_{2}$ (advertising) included
$\mathrm{H}_{1}: \mathrm{X}_{1}$ does improve model

$$
\begin{aligned}
& \alpha=.05, \mathrm{df}=1 \text { and } 12 \\
& \mathrm{~F}_{0.05}=4.75
\end{aligned}
$$

(For $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ )

| ANOVA |  |  |  |
| :--- | ---: | :---: | :---: |
|  | $d f$ | SS | MS |
| Regression | 2 | $\mathbf{2 9 4 6 0 . 0 2 6 8 7}$ | 14730.01343 |
| Residual | 12 | 27033.30647 | $\mathbf{2 2 5 2 . 7 7 5 5 3 9}$ |
| Total | 14 | 56493.33333 |  |

(For $\mathrm{X}_{2}$ only)

| ANOVA |  |  |
| :--- | ---: | :---: |
|  | $d f$ | $S S$ |
| Regression | 1 | $\mathbf{1 7 4 8 4 . 2 2 2 4 9}$ |
| Residual | 13 | 39009.11085 |
| Total | 14 | 56493.33333 |

## Testing Portions of Model: Example

(continued)
(For $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ )

| ANOVA |  |  |  |
| :--- | ---: | :---: | :---: |
|  | $d f$ | $S S$ | $M S$ |
| Regression | 2 | $\mathbf{2 9 4 6 0 . 0 2 6 8 7}$ | 14730.01343 |
| Residual | 12 | 27033.30647 | $\mathbf{2 2 5 2 . 7 7 5 5 3 9}$ |
| Total | 14 | 56493.33333 |  |

(For $\mathrm{X}_{2}$ only)
ANOVA

|  | $d f$ | $S S$ |
| :--- | ---: | :---: |
| Regression | 1 | $\mathbf{1 7 4 8 4 . 2 2 2 4 9}$ |
| Residual | 13 | 39009.11085 |
| Total | 14 | 56493.33333 |

$$
F_{\text {STAT }}=\frac{\operatorname{SSR}\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}\right)}{\operatorname{MSE}(\mathrm{all})}=\frac{29,460.03-17,484.22}{225278}=5.316
$$

Conclusion: Since $F_{\text {STAT }}=5.316>F_{0.05}=4.75$ Reject $H_{0}$;
Adding $\mathrm{X}_{1}$ does improve model

## Relationship Between Test Statistics

- The partial $F$ test statistic developed in this section and the $t$ test statistic are both used to determine the contribution of an independent variable to a multiple regression model.
- The hypothesis tests associated with these two statistics always result in the same decision (that is, the $p$-values are identical).

$$
t_{a}^{2}=F_{1, a}
$$

Where $\mathrm{a}=$ degrees of freedom

## Coefficient of Partial Determination for k variable model

$=$| $r_{\left.\mathrm{r}_{\mathrm{j}} \text { (allvanables except } \mathrm{j}\right)}^{2} \mathrm{SSR}\left(\mathrm{X}_{\mathrm{j}} \mid\right.$ all variables except j$)$ |
| :--- |
| $\operatorname{SST}-\operatorname{SSR}($ all variables $)+\operatorname{SSR}\left(\mathrm{X}_{\mathrm{j}} \mid\right.$ all variables except j$)$ |

- Measures the proportion of variation in the dependent variable that is explained by $X_{j}$ while controlling for (holding constant) the other independent variables


## Coefficient of Partial Determination in Excel

- Coefficients of Partial Determination can be found using Excel:
- PHStat | regression | multiple regression ...

Check the "coefficient of partial determination" box

| Regression Analysis <br> Coefficients of Partial Determination |  |  |  |
| :--- | :--- | :--- | :--- |
| Intermediate Calculations |  |  |  |
| SSR(X1,X2) | 29460.02687 |  |  |
| SST | 56493.33333 |  |  |
| SSR(X2) | 17484.22249 | SSR(X1 \| X2) | 11975.80438 |
| SSR(X1) | 11100.43803 | SSR(X2 \| X1) | 18359.58884 |
| Coefficients |  |  |  |
|  |  |  |  |
| r2 Y1.2 | 0.307000188 |  |  |
| r2 Y2.1 | $\mathbf{0 . 4 0 4 4 5 9 5 2 4}$ |  |  |

## Using Dummy Variables

- A dummy variable is a categorical independent variable with two levels:
- yes or no, on or off, male or female
- coded as 0 or 1
- Assumes the slopes associated with numerical independent variables do not change with the value for the categorical variable
- If more than two levels, the number of dummy variables needed is (number of levels - 1)


## Dummy-Variable Example (with 2 Levels)

$$
\hat{\mathrm{Y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}
$$

Let:
$Y=$ pie sales
$X_{1}=$ price
$\mathrm{X}_{2}=$ holiday ( $\mathrm{X}_{2}=1$ if a holiday occurred during the week) ( $\mathrm{X}_{2}=0$ if there was no holiday that week)


## Interpreting the Dummy Variable Coefficient (with 2 Levels)

Example: Sales $=300-30$ (Price) +15 (Holiday)
Sales: number of pies sold per week
Price: pie price in \$
Holiday: $\begin{cases}1 & \text { If a holiday occurred during the week } \\ 0 & \text { If no holiday occurred }\end{cases}$
$\mathrm{b}_{2}=15$ : on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

- The number of dummy variables is one less than the number of levels
- Example:

$$
Y=\text { house price } ; X_{1}=\text { square feet }
$$

- If style of the house is also thought to matter:

Style = ranch, split level, colonial
Three levels, so two dummy variables are needed

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.

## Dummy-Variable Models (more than 2 Levels)

(continued)

- Example: Let "colonial" be the default category, and let $X_{2}$ and $X_{3}$ be used for the other two categories:

$$
\begin{aligned}
& Y=\text { house price } \\
& X_{1}=\text { square feet } \\
& X_{2}=1 \text { if ranch, } 0 \text { otherwise } \\
& X_{3}=1 \text { if split level, } 0 \text { otherwise }
\end{aligned}
$$

The multiple regression equation is:

$$
\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}
$$



Chap 14-51

## Interpreting the Dummy Variable Coefficients (with 3 Levels)

Consider the regression equation:

$$
\hat{Y}=20.43+0.045 X_{1}+23.53 X_{2}+18.84 X_{3}
$$

For a colonial: $X_{2}=X_{3}=0$
$\hat{Y}=20.43+0.045 X_{1}$
For a ranch: $X_{2}=1 ; X_{3}=0$
$\hat{Y}=20.43+0.045 X_{1}+23.53$
For a split level: $X_{2}=0 ; X_{3}=1$
$\hat{Y}=20.43+0.045 X_{1}+18.84$

With the same square feet, a ranch will have an estimated average price of 23.53 thousand dollars more than a colonial.

With the same square feet, a split-level will have an estimated average price of 18.84 thousand dollars more than a colonial.

## Interaction Between <br> Independent Variables

- Hypothesizes interaction between pairs of $X$ variables
- Response to one $X$ variable may vary at different levels of another $X$ variable
- Contains two-way cross product terms

$$
\text { - } \begin{aligned}
\hat{Y} & \left.=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}\right) \\
& =b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3}\left(X_{1} X_{2}\right)
\end{aligned}
$$

## Effect of Interaction

- Given: $\quad Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon$
- Without interaction term, effect of $X_{1}$ on $Y$ is measured by $\beta_{1}$
- With interaction term, effect of $X_{1}$ on $Y$ is measured by $\beta_{1}+\beta_{3} X_{2}$
- Effect changes as $X_{2}$ changes


## Interaction Example



## Significance of Interaction Term

- Can perform a partial F test for the contribution of a variable to see if the addition of an interaction term improves the model
- Multiple interaction terms can be included
- Use a partial F test for the simultaneous contribution of multiple variables to the model


## Simultaneous Contribution of Independent Variables

- Use partial F test for the simultaneous contribution of multiple variables to the model
- Let $m$ variables be an additional set of variables added simultaneously
- To test the hypothesis that the set of $m$ variables improves the model:

$$
F_{S T A T}=\frac{[\mathrm{SSR}(\text { all })-\mathrm{SSR}(\text { all exceptnew set of } \mathrm{m} \text { variables })] / \mathrm{m}}{\mathrm{MSE}(\text { all })}
$$

$$
\text { (where } \mathrm{F}_{\text {STAT }} \text { has } m \text { and } n-k-1 \text { d.f.) }
$$

## Logistic Regression

- Used when the dependent variable Y is binary (i.e., Y takes on only two values)
- Examples
- Customer prefers Brand A or Brand B
- Employee chooses to work full-time or part-time
- Loan is delinquent or is not delinquent
- Person voted in last election or did not
- Logistic regression allows you to predict the probability of a particular categorical response


## Logistic Regression

- Logistic regression is based on the odds ratio, which represents the probability of a success compared with the probability of failure

$$
\text { Odds ratio }=\frac{\text { probability of success }}{1-\text { probability of success }}
$$

- The logistic regression model is based on the natural log of this odds ratio


## Logistic Regression

Logistic Regression Model:

$$
\ln (\text { odds ratio })=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 \mathrm{i}}+\cdots+\beta_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}+\varepsilon_{\mathrm{i}}
$$

Where $k=$ number of independent variables in the model
$\varepsilon_{\mathrm{i}}=$ random error in observation i

Logistic Regression Equation:
$\ln ($ estimated odds ratio $)=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1 \mathrm{i}}+\mathrm{b}_{2} \mathrm{X}_{2 \mathrm{i}}+\cdots+\mathrm{b}_{\mathrm{k}} \mathrm{X}_{\mathrm{ki}}$

## Estimated Odds Ratio and Probability of Success

- Once you have the logistic regression equation, compute the estimated odds ratio:

Estimatedodds ratio $=e^{\ln (\text { estimaed odds ratio) }}$

- The estimated probability of success is

Estimatedprobability of success $=\frac{\text { estimatedodds ratio }}{1+\text { estimatedoddsratio }}$

## Chapter Summary

- Developed the multiple regression model
- Tested the significance of the multiple regression model
- Discussed adjusted ${ }^{2}$
- Discussed using residual plots to check model assumptions
- Tested individual regression coefficients
- Tested portions of the regression model
- Used dummy variables
- Evaluated interaction effects
- Discussed logistic regression

