Basic Business Statistics $11^{\text {th }}$ Edition

Chapter 13

Simple Linear Regression

Learning Objectives

In this chapter, you learn:

■ How to use regression analysis to predict the value of a dependent variable based on an independent variable

- The meaning of the regression coefficients b_{0} and b_{1}
- How to evaluate the assumptions of regression analysis and know what to do if the assumptions are violated
- To make inferences about the slope and correlation coefficient
- To estimate mean values and predict individual values

Correlation vs. Regression

- A scatter plot can be used to show the relationship between two variables
- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables
- Correlation is only concerned with strength of the relationship
- No causal effect is implied with correlation
- Scatter plots were first presented in Ch. 2
- Correlation was first presented in Ch. 3

Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable
Dependent variable: the variable we wish to predict or explain
Independent variable: the variable used to predict or explain the dependent variable

Simple Linear Regression

 Model- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

Types of Relationships

(continued)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

Correlation Coefficient

- The population correlation coefficient ρ (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of ρ and is used to measure the strength of the linear relationship in the sample observations

Features of ρ and r

- Unit free
- Range between -1 and 1
- The closer to -1 , the stronger the negative linear relationship
- The closer to 1 , the stronger the positive linear relationship
- The closer to 0 , the weaker the linear relationship

Examples of Approximate

 r Values

Calculating the Correlation Coefficient

Sample correlation coefficient:

$$
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\left[\sum(x-\bar{x})^{2}\right]\left[\sum(y-\bar{y})^{2}\right]}}
$$

or the algebraic equivalent:

$$
r=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left[n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}\right]\left[n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}\right]}}
$$

where:
$r=$ Sample correlation
coefficient
n = Sample size

Calculation Example

	Tree Height	Trunk Diameter			
	y	x	xy	y^{2}	x^{2}
	35	8	280	1225	64
	49	9	441	2401	81
	27	7	189	729	49
	33	6	198	1089	36
	60	13	780	3600	169
	21	7	147	441	49
)	45	11	495	2025	121
	51	12	612	2601	144
	$\Sigma=321$	$\Sigma=73$	$\Sigma=3142$	$\Sigma=14111$	$\Sigma=713$

Excel Output

Excel Correlation Output

Tools / data analysis / correlation...

	Tree Height	Trunk Diameter
Tree Height	1	1
Trunk Diameter	0.886231	
Correlation between		
Tree Height and Trunk Diameter		

Significance Test for Correlation

- Hypotheses

$\mathrm{H}_{0}: \rho=0$	(no correlation)
$\mathrm{H}_{\mathrm{A}}: \rho \neq 0$	(correlation exists)

- Test statistic
.

$$
t=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}
$$

(with $\mathrm{n}-2$ degrees of freedom)

Example: Produce Stores

Is there evidence of a linear relationship between tree height and trunk diameter at the .05 level of significance?

$$
\begin{gathered}
\begin{array}{ll}
\begin{array}{l}
H_{0}: \rho=0 \\
H_{1}: \rho \neq 0
\end{array} & \text { (No correlation) } \\
\alpha=.05, & \mathrm{df}=8-2=6 \\
\mathrm{t}=\frac{\mathrm{r}}{\sqrt{\frac{1-\mathrm{r}^{2}}{\mathrm{n}-2}}}=\frac{.886}{\sqrt{\frac{1-.886^{2}}{8-2}}}=4.68 \\
\end{array} \\
\hline
\end{gathered}
$$

Chap 13-17

Example: Test Solution

Decision: Reject H_{0}

Conclusion:
There is evidence of a linear relationship at the 5% level of significance

Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain
Independent variable: the variable used to explain the dependent variable

Simple Linear Regression Model

- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Types of Regression Models

Positive Linear Relationship

Negative Linear Relationship

Relationship NOT Linear

No Relationship

Simple Linear Regression Model

Simple Linear Regression

 Model

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

Least Squares Criterion

- b_{0} and b_{1} are obtained by finding the values of b_{0} and b_{1} that minimize the sum of the squared residuals

$$
\begin{aligned}
\sum \mathrm{e}^{2} & =\sum(\mathrm{y}-\hat{y})^{2} \\
& =\sum\left(\mathrm{y}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}\right)\right)^{2}
\end{aligned}
$$

The Least Squares Equation

- The formulas for b_{1} and b_{0} are:

$$
b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

algebraic equivalent:

$$
b_{1}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}
$$

and

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

The Least Squares Method

b_{0} and b_{1} are obtained by finding the values of that minimize the sum of the squared differences between Y and \hat{Y} :

$$
\min \sum\left(\mathrm{Y}_{\mathrm{i}}-\hat{\mathrm{Y}}_{\mathrm{i}}\right)^{2}=\min \sum\left(\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{\mathrm{i}}\right)\right)^{2}
$$

- The coefficients b_{0} and b_{1}, and other regression results in this chapter, will be found using Excel or Minitab

Formulas are shown in the text for those who are interested

Interpretation of the Slope and the Intercept

- b_{0} is the estimated average value of Y when the value of X is zero
- b_{1} is the estimated change in the average value of Y as a result of a one-unit change in X

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
- Dependent variable $(\mathrm{Y})=$ house price in $\$ 1000$ s
- Independent variable $(X)=$ square feet

Simple Linear Regression Example: Data

House Price in $\$ 1000 s$ (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Simple Linear Regression Example: Scatter Plot

House price model: Scatter Plot

Simple Linear Regression Example: Using Excel

Simple Linear Regression Example: Excel Output

Simple Linear Regression Example：Minitab Output

Simple Linear Regression Example： Graphical Representation

House price model：Scatter Plot and Prediction Line

$$
\text { houseprice }=98.24833+0.10977 \text { (squarefeet) }
$$

Simple Linear Regression

 Example: Interpretation of b_{0}houseprice $=98.24833+0.10977$ (squarefeet)

- b_{0} is the estimated average value of Y when the value of X is zero (if $X=0$ is in the range of observed X values)
- Because a house cannot have a square footage of $0, b_{0}$ has no practical application

Simple Linear Regression Example: Interpreting b_{1}

$$
\text { houseprice }=98.24833+0.10977 \text { (squarefeet) }
$$

- b_{1} estimates the change in the average value of Y as a result of a one-unit increase in X
- Here, $\mathrm{b}_{1}=0.10977$ tells us that the mean value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Simple Linear Regression Example：Making Predictions

Predict the price for a house with 2000 square feet：

$$
\begin{aligned}
\text { houseprice } & =98.25+0.1098 \text { (sq.ft.) } \\
& =98.25+0.1098(2000) \\
& =317.85
\end{aligned}
$$

The predicted price for a house with 2000 square feet is $317.85(\$ 1,000 s)=\$ 317,850$

Simple Linear Regression Example：Making Predictions

－When using a regression model for prediction， only predict within the relevant range of data

Measures of Variation

- Total variation is made up of two parts:

$$
\text { SST }=\mathrm{SSR}+\mathrm{SSE}
$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

SSR $=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
SSE $=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
where:
$\bar{Y}=$ Mean value of the dependent variable
$Y_{i}=$ Observed value of the dependent variable
$\hat{Y}_{i}=$ Predicted value of Y for the given X_{i} value

Measures of Variation

- SST = total sum of squares (Total Variation)
- Measures the variation of the Y_{i} values around their mean \bar{Y}
- SSR = regression sum of squares (Explained Variation)
- Variation attributable to the relationship between X and Y
- SSE = error sum of squares (Unexplained Variation)
- Variation in Y attributable to factors other than X

Coefficient of Determination, r^{2}

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called r-squared and is denoted as r^{2}

$$
r^{2}=\frac{S S R}{S S T}=\frac{\text { regression } \text { sum } \text { of squares }}{\text { total } \text { sum of squares }}
$$

note:

$$
0 \leq r^{2} \leq 1
$$

Examples of Approximate

r^{2} Values

$r^{2}=0$

No linear relationship between X and Y :

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Simple Linear Regression Example: Coefficient of Determination, r^{2} in Excel

	Coefficients	Standard Error	Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Simple Linear Regression Example: Coefficient of Determination, r^{2} in Minitab

Standard Error of Estimate

- The standard deviation of the variation of observations around the regression line is estimated by

$$
S_{Y X}=\sqrt{\frac{S S E}{n-2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}}
$$

Where

$$
\begin{aligned}
\text { SSE } & =\text { error sum of squares } \\
\mathrm{n} & =\text { sample size }
\end{aligned}
$$

Simple Linear Regression Example: Standard Error of Estimate in Excel

Simple Linear Regression Example: Standard Error of Estimate in Minitab

The regression equation is					
Price $=98.2+0.110$ Square Feet					
Predictor	Coef	SE C	oef	T P	
Constant 98	98.25	58.03		1.690	129
Square Feet 0	0.10977	70.03	297		. 010
$\mathrm{S}=41.3303 \mathrm{R}-\mathrm{Sq}=58.1 \% \quad \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=52.8 \%$					
Analysis of Variance					
Source	DF	SS	MS		P
Regression	1	18935	18935	11.08	0.010
Residual Error	8	13666	1708		
Total	9	32600			

Comparing Standard Errors

$S_{Y X}$ is a measure of the variation of observed Y values from the regression line

The magnitude of $S_{Y X}$ should always be judged relative to the size of the Y values in the sample data
i.e., $\mathrm{S}_{\mathrm{YX}}=\$ 41.33 \mathrm{~K}$ is moderately small relative to house prices in the $\$ 200 \mathrm{~K}-\$ 400 \mathrm{~K}$ range

Assumptions of Regression L.I.N.E

- Linearity
- The relationship between X and Y is linear
- Independence of Errors
- Error values are statistically independent
- Normality of Error
- Error values are normally distributed for any given value of X
- Equal Variance (also called homoscedasticity)
- The probability distribution of the errors has constant variance

Residual Analysis

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

- The residual for observation $\mathrm{i}, \mathrm{e}_{\mathrm{i}}$, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
- Examine for linearity assumption
- Evaluate independence assumption
- Evaluate normal distribution assumption
- Examine for constant variance for all levels of X (homoscedasticity)
- Graphical Analysis of Residuals
- Can plot residuals vs. X

Residual Analysis for Linearity

Residual Analysis for Independence

Checking for Normality

- Examine the Stem-and-Leaf Display of the Residuals
- Examine the Boxplot of the Residuals
- Examine the Histogram of the Residuals
- Construct a Normal Probability Plot of the Residuals

Residual Analysis for Normality

When using a normal probability plot, normal errors will approximately display in a straight line

Percent

Simple Linear Regression Example: Excel Residual Output

Measuring Autocorrelation: The Durbin-Watson Statistic

- Used when data are collected over time to detect if autocorrelation is present
- Autocorrelation exists if residuals in one time period are related to residuals in another period

Autocorrelation

- Autocorrelation is correlation of the errors (residuals) over time

Time (t) Residual Plot

- Here, residuals show a cyclic pattern, not random. Cyclical patterns are a sign of positive autocorrelation

- Violates the regression assumption that residuals are random and independent

The Durbin-Watson Statistic

- The Durbin-Watson statistic is used to test for autocorrelation
H_{0} : residuals are not correlated
H_{1} : positive autocorrelation is present

$$
D=\frac{\sum_{i=2}^{n}\left(e_{i}-e_{i-1}\right)^{2}}{\sum_{i=1}^{n} e_{i}^{2}}
$$

> - The possible range is $0 \leq \mathrm{D} \leq 4$
> - D should be close to 2 if H_{0} is true
> - D less than 2 may signal positive autocorrelation, D greater than 2 may signal negative autocorrelation

Testing for Positive Autocorrelation

H_{0} : positive autocorrelation does not exist
H_{1} : positive autocorrelation is present

- Calculate the Durbin-Watson test statistic = D
(The Durbin-Watson Statistic can be found using Excel or Minitab)
- Find the values d_{L} and d_{U} from the Durbin-Watson table (for sample size \mathbf{n} and number of independent variables \mathbf{k})
Decision rule: reject H_{0} if $D<d_{L}$

Testing for Positive Autocorrelation

- Suppose we have the following time series data:

- Is there autocorrelation?

Testing for Positive Autocorrelation

- Example with $\mathrm{n}=25$:

Excel/PHStat output:

Durbin-Watson Calculations	
Sum of Squared Difference of Residuals	3296.18
Sum of Squared Residuals	3279.98
Durbin-Watson Statistic	$\mathbf{1 . 0 0 4 9 4}$

$$
D=\frac{\sum_{i=2}^{n}\left(e_{i}-e_{i-1}\right)^{2}}{\sum_{i=1}^{n} e_{i}^{2}}=\frac{3296.18}{3279.98}=1.00494
$$

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

Testing for Positive Autocorrelation

- Here, $\mathrm{n}=25$ and there is $\mathrm{k}=1$ one independent variable
- Using the Durbin-Watson table, $d_{L}=1.29$ and $d_{U}=1.45$
- $D=1.00494<d_{L}=1.29$, so reject H_{0} and conclude that significant positive autocorrelation exists

Inferences About the Slope

- The standard error of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
S_{b_{1}}=\frac{S_{Y X}}{\sqrt{S S X}}=\frac{S_{Y X}}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}}}
$$

where:
$\mathrm{S}_{\mathrm{b}_{1}}=$ Estimate of the standard error of the slope $S_{Y X}=\sqrt{\frac{S S E}{n-2}}=$ Standard error of the estimate

Inferences About the Slope: t Test

- t test for a population slope - Is there a linear relationship between X and Y ?
- Null and alternative hypotheses
- $H_{0}: \beta_{1}=0 \quad$ (no linear relationship)
- $H_{1}: \beta_{1} \neq 0$ (linear relationship does exist)
- Test statistic

$$
\begin{aligned}
\mathrm{t}_{\text {STAT }} & =\frac{\mathrm{b}_{1}-\beta_{1}}{\mathrm{~S}_{\mathrm{b}_{1}}}
\end{aligned} \begin{aligned}
& \text { where: } \\
& \text { d.f. }=\mathrm{n}-2
\end{aligned} \begin{aligned}
& \mathrm{b}_{1}=\text { regression slope } \\
& \text { coefficient }
\end{aligned}
$$

Inferences About the Slope: t Test Example

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

houseprice $=98.25+0.1098$ (sq.ft.)

The slope of this model is 0.1098
Is there a relationship between the square footage of the house and its sales price?

Inferences About the Slope: t Test Example
 $$
\begin{aligned} & H_{0}: \beta_{1}=0 \\ & H_{1}: \beta_{1} \neq 0 \end{aligned}
$$

From Excel output:

Inferences About the Slope: t Test Example

Test Statistic: $\mathbf{t}_{\text {STAT }}=\mathbf{3 . 3 2 9}$

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Decision: Reject H_{0}
There is sufficient evidence that square footage affects house price

Inferences About the Slope:

$\mathrm{H}_{0}: \beta_{1}=0 \quad \mathrm{t}$ Test Example $H_{1} \cdot \beta \neq 0$

From Excel output:

	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

From Minitab output:

Predictor	Coef	SE Coef	T	P
Constant	98.25	58.03	1.69	0.129
Square Feet	0.10977	0.03297	3.33	0.010

Decision: Reject H_{0}, since p -value $<\alpha$
There is sufficient evidence that square footage affects house price.

F Test for Significance

- F Test statistic: $F_{\text {STAT }}=\frac{M S R}{M S E}$
where

$$
\begin{aligned}
& \mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{k}} \\
& \mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{n}-\mathrm{k}-1}
\end{aligned}
$$

where $F_{\text {STAT }}$ follows an F distribution with k numerator and $(n-k-1)$ denominator degrees of freedom
($k=$ the number of independent variables in the regression model)

F-Test for Significance Excel Output

F-Test for Significance Minitab Output

F Test for Significance

(continued)

Test Statistic:
$\mathrm{F}_{\text {STAT }}=\frac{M S R}{M S E}=11.08$
Decision:
Reject H_{0} at $\boldsymbol{\alpha}=0.05$

Conclusion:

There is sufficient evidence that house size affects selling price

Confidence Interval Estimate for the Slope

Confidence Interval Estimate of the Slope:

$$
\mathrm{b}_{1} \pm t_{\alpha / 2} \mathrm{~S}_{\mathrm{b}_{1}} \quad \text { d.f. }=\mathrm{n}-2
$$

Excel Printout for House Prices:

	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95\% level of confidence, the confidence interval for the slope is $(0.0337,0.1858)$

Confidence Interval Estimate for the Slope

	Coefficients	Standard Error	\boldsymbol{t} Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is $\$ 1000$ s, we are 95% confident that the average impact on sales price is between $\$ 33.74$ and $\$ 185.80$ per square foot of house size

This 95% confidence interval does not include 0 .
Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

t Test for a Correlation Coefficient

- Hypotheses
$\mathrm{H}_{0}: \rho=0 \quad$ (no correlation between X and Y) $\mathrm{H}_{1}: \rho \neq 0 \quad$ (correlation exists)
- Test statistic

$$
\mathrm{t}_{\text {STAT }}=\frac{\mathrm{r}-\rho}{\sqrt{\frac{1-r^{2}}{n-2}}} \quad \begin{aligned}
& \text { (with } n-2 \text { degrees of freedom) } \\
& \begin{array}{l}
\text { where } \\
r=+\sqrt{r^{2}} \\
\text { if } b_{1}>0 \\
r=-\sqrt{r^{2}} \\
\text { if } b_{1}<0
\end{array}
\end{aligned}
$$

t-test For A Correlation Coefficient

(continued)
Is there evidence of a linear relationship between square feet and house price at the .05 level of significance?

$$
\begin{gathered}
\begin{array}{l}
\mathrm{H}_{0}: \rho=0 \\
\mathrm{H}_{1}: \rho \neq 0
\end{array} \\
\alpha=. \text { (No correlation) } \\
\alpha=.05, \quad \mathrm{df}=10-2=8 \\
\mathrm{t}_{\text {STAT }}
\end{gathered}=\frac{\mathrm{r}-\rho}{\sqrt{\frac{1-\mathrm{r}^{2}}{\mathrm{n}-2}}}=\frac{.762-0}{\sqrt{\frac{1-.762^{2}}{10-2}}}=3.329 .
$$

t-test For A Correlation Coefficient

(continued)

Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..

Decision:
Reject H_{0}
Conclusion:
There is evidence of a linear association at the 5% level of significance

Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around Y to express uncertainty about the value of Y for a given X_{i}

Confidence Interval for the Average Y, Given X

Confidence interval estimate for the mean value of Y given a particular X_{i}

> Confidenceintervalfor $\mu_{\mathrm{Y} \mid \mathrm{X}=\mathrm{X}_{\mathrm{i}}}$: $\hat{Y} \pm t_{\alpha / 2} \mathrm{~S}_{\mathrm{YX}} \sqrt{h_{i}}$

$$
\mathrm{h}_{\mathrm{i}}=\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{SSX}}=\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\sum_{\mathrm{S}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}
$$

Prediction Interval for an Individual Y, Given X

Confidence interval estimate for an Individual value of Y given a particular X_{i}

Confidenceintervalfor $\mathrm{Y}_{\mathrm{X}=\mathrm{X}_{\mathrm{i}}}$:
$\hat{Y} \pm t_{\alpha / 2} \mathrm{~S}_{\mathrm{YX}} \sqrt{1+h_{i}}$

This extra term adds to the interval width to reflect the added uncertainty for an individual case

Estimation of Mean Values: Example

Confidence Interval Estimate for $\mu_{Y \mid X=x_{i}}$

Find the 95% confidence interval for the mean price of 2,000 square-foot houses

Predicted Price
Predicted Price $\mathrm{Y}_{\mathrm{i}}=317.85$ ($\$ 1,000 \mathrm{~s}$)

$$
\hat{\mathrm{Y}} \pm \mathrm{t}_{0.025} \mathrm{~S}_{\mathrm{YX}} \sqrt{\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\sum\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}}=317.85 \pm 37.12
$$

The confidence interval endpoints are 280.66 and 354.90, or from $\$ 280,660$ to $\$ 354,900$

Estimation of Individual Values: Example

$$
\text { Prediction Interval Estimate for } \mathrm{Y}_{\mathrm{X}=\mathrm{x}_{\mathrm{i}}}
$$

Find the 95\% prediction interval for an individual house with 2,000 square feet

Predicted Price $\mathrm{Y}_{\mathrm{i}}=317.85(\$ 1,000 \mathrm{~s})$

$$
\hat{\mathrm{Y}} \pm \mathrm{t}_{0.025} \mathrm{~S}_{\mathrm{YX}} \sqrt{1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\sum\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}}=317.85 \pm 102.28
$$

The prediction interval endpoints are 215.50 and 420.07, or from $\$ 215,500$ to $\$ 420,070$

Finding Confidence and Prediction Intervals in Excel

- From Excel, use

PHStat | regression | simple linear regression ...

- Check the
"confidence and prediction interval for $\mathrm{X}=$ " box and enter the X -value and confidence level desired

Finding Confidence and Prediction Intervals in Excel

Finding Confidence and Prediction Intervals in Minitab

Pitfalls of Regression Analysis

- Lacking an awareness of the assumptions underlying least-squares regression
- Not knowing how to evaluate the assumptions
- Not knowing the alternatives to least-squares regression if a particular assumption is violated
- Using a regression model without knowledge of the subject matter
- Extrapolating outside the relevant range

Strategies for Avoiding the Pitfalls of Regression

- Start with a scatter plot of X vs. Y to observe possible relationship
- Perform residual analysis to check the assumptions
- Plot the residuals vs. X to check for violations of assumptions such as homoscedasticity
- Use a histogram, stem-and-leaf display, boxplot, or normal probability plot of the residuals to uncover possible non-normality

Strategies for Avoiding the Pitfalls of Regression

(continued)

- If there is violation of any assumption, use alternative methods or models
- If there is no evidence of assumption violation, then test for the significance of the regression coefficients and construct confidence intervals and prediction intervals
- Avoid making predictions or forecasts outside the relevant range

Chapter Summary

- Introduced types of regression models
- Reviewed assumptions of regression and correlation
- Discussed determining the simple linear regression equation
- Described measures of variation
- Discussed residual analysis
- Addressed measuring autocorrelation

Chapter Summary

- Described inference about the slope
- Discussed correlation -- measuring the strength of the association
- Addressed estimation of mean values and prediction of individual values
- Discussed possible pitfalls in regression and recommended strategies to avoid them

