Basic Business Statistics $11^{\text {th }}$ Edition

Chapter 8

Confidence Interval Estimation

\qquad

Chapter Outline

Content of this chapter

- Confidence Intervals for the Population Mean, μ
- when Population Standard Deviation σ is Known
- when Population Standard Deviation σ is Unknown
- Confidence Intervals for the Population Proportion, п
- Determining the Required Sample Size
\qquad

Point Estimates

We can estimate a Population Parameter \ldots		with a Sample Statistic (a Point Estimate)
Mean	μ	$\overline{\mathrm{X}}$
Proportion	π	p

Learning Objectives

In this chapter, you learn:

- To construct and interpret confidence interval estimates for the mean and the proportion
- How to determine the sample size necessary to develop a confidence interval for the mean or proportion
- How to use confidence interval estimates in auditing
\square
\qquad

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals
- An interval gives a range of values:
- Takes into consideration variation in sample statistics from sample to sample
- Based on observations from 1 sample
- Gives information about closeness to unknown population parameters
- Stated in terms of level of confidence e.g. 95% confident, 99% confident - Can never be 100% confident
Confidence Interval Example

Sample \#	\bar{x}	Lower Limit	Upper Limit	Contain $\mu ?$
1	362.30	356.42	368.18	Yes
2	369.50	363.62	375.38	Yes
3	360.00	354.12	365.88	No
4	362.12	356.24	368.00	Yes
5	373.88	368.00	379.76	Yes

Estimation Process

Confidence Interval Example

Cereal fill example

- Population has $\mu=368$ and $\sigma=15$.
- If you take a sample of size $\mathrm{n}=25$ you know
- 368 ± 1.96 * $15 / \sqrt{25}=(362.12,373.88)$ contains 95% of the sample means
- When you don't know μ, you use \bar{X} to estimate μ

If $\bar{X}=362.3$ the interval is $362.3 \pm 1.96 * 15 / \sqrt{25}=(356.42,368.18)$
Since $356.42 \leq \mu \leq 368.18$ the interval based on this sample makes a correct statement about μ.

But what about the intervals from other possible samples of size 25?
\qquad

Confidence Interval Example
(continued)

- In practice you only take one sample of size n
- In practice you do not know μ so you do not know if the interval actually contains μ
- However you do know that 95% of the intervals formed in this manner will contain μ
- Thus, based on the one sample, you actually selected you can be 95% confident your interval will contain μ (this is a 95% confidence interval)

Note: 95% confidence is based on the fact that we used $Z=1.96$.
\qquad

General Formula

- The general formula for all confidence intervals is:

Point Estimate \pm (Critical Value)(Standard Error)

Where:

- Point Estimate is the sample statistic estimating the population

W parameter of interest

- Critical Value is a table value based on the sampling distribution of the point estimate and the desired confidence level
- Standard Error is the standard deviation of the point estimate

Confidence Level

- Confidence Level
- Confidence the interval will contain the unknown population parameter
- A percentage (less than 100\%)
\qquad

Confidence Intervals

Finding the Critical Value, $Z_{\alpha / 2}$
Consider a 95\% confidence interval: $\quad \mathrm{Z}_{\alpha / 2}= \pm 1.96$

Basic Business Staisitics, 11 e $\begin{gathered}\text { 2009 Prentice-Hall, Inc.. }\end{gathered}$
Chap 8.17

Confidence Level, (1- α)

- Suppose confidence level = 95\%
- Also written $(1-\alpha)=0.95$, (so $\alpha=0.05$)
- A relative frequency interpretation:
- 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
- No probability involved in a specific interval

Confidence Interval for μ

 (σ Known)- Assumptions
- Population standard deviation σ is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate:

$$
\overline{\mathrm{X}} \pm \mathrm{Z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

where \bar{X} is the point estimate
$Z_{\alpha / 2}$ is the normal distribution critical value for a probability of $\alpha / 2$ in each tail
$\sigma / \sqrt{\mathrm{n}}$ is the standard error
Basic Eusiness Staisisics, 11 @ 2009 Prentice-Hall, Inc.
Chap 8.16

Common Levels of Confidence

- Commonly used confidence levels are 90\%, 95\%, and 99\%

Confidence Level	Confidence Coefficient, $1-\alpha$	$\boldsymbol{Z}_{\alpha / 2}$ value
80%	0.80	1.28
90%	0.90	1.645
95%	0.95	1.96
98%	0.98	2.33
99%	0.99	2.58
99.8%	0.998	3.08
99.9%	0.999	3.27

Example

(continued)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Solution:

$$
\begin{aligned}
& \overline{\mathrm{X}} \pm \mathrm{Z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}} \\
& =2.20 \pm 1.96(0.35 / \sqrt{11}) \\
& =2.20 \pm 0.2068 \\
1.9932 & \leq \mu \leq 2.4068
\end{aligned}
$$

\qquad

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Interpretation

- We are 95\% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean
\qquad
Basic Eusiness Staistics, 11 @ 2009 Prentice-Hall. Inc.

Do You Ever Truly Know σ ?

- Probably not!
- In virtually all real world business situations, σ is not known.
- If there is a situation where σ is known then μ is also known (since to calculate σ you need to know μ.)
- If you truly know μ there would be no need to gather a sample to estimate it.

Chap 8.24

Confidence Interval for μ (σ Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, S
- This introduces extra uncertainty, since S is variable from sample to sample
- So we use the t distribution instead of the normal distribution
\qquad

Student's t Distribution

- The t is a family of distributions
- The $\mathrm{t}_{\text {a/2 }}$ value depends on degrees of freedom (d.f.)
- Number of observations that are free to vary after sample mean has been calculated

$$
\text { d.f. }=\mathrm{n}-1
$$

\qquad

Student's t Distribution

Note: $\mathrm{t} \longrightarrow \mathrm{Z}$ as n increases

Basic Business Staisitics, 11 e \oplus 2009 Prentice-Hall, Inc..

Confidence Interval for μ (σ Unknown)

- Assumptions
- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$
\bar{X} \pm t_{\alpha / 2} \frac{S}{\sqrt{n}}
$$

(where $\mathrm{t}_{\mathrm{d} / 2}$ is the critical value of the t distribution with $\mathrm{n}-1$ degrees of freedom and an area of $\alpha / 2$ in each tail)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, $n=3$, so degrees of freedom $=n-1=3-1=2$
(2 values can be any numbers, but the third is not free to vary for a given mean)
Basic Business Slatistics, 11e © 2009 Prentice-Hall, hnc. Chaps

Student's t Table

Selected t distribution values

With comparison to the Z value

Confidence Level	$\begin{gathered} t \\ (10 \text { d.f. }) \end{gathered}$	$\begin{gathered} t \\ (20 \text { d.f. }) \end{gathered}$	$\begin{gathered} t \\ (30 \text { d.f. }) \end{gathered}$	$\begin{gathered} \text { Z } \\ (\infty \text { d.f. }) \end{gathered}$
0.80	1.372	1.325	1.310	1.28
0.90	1.812	1.725	1.697	1.645
0.95	2.228	2.086	2.042	1.96
0.99	3.169	2.845	2.750	2.58

Note: $\mathrm{t} \rightarrow \mathrm{Z}$ as n increases
Basic Business Staisitics, 111 e 2009 Prentice-Hall, Inc.
Chap 8.31

Example of t distribution confidence interval

- Interpreting this interval requires the assumption that the population you are sampling from is approximately a normal distribution (especially since n is only 25).
- This condition can be checked by creating a :
- Normal probability plot or
- Boxplot
- An interval estimate for the population proportion (π) can be calculated by adding an allowance for uncertainty to the sample proportion (p)
.
,

Example of t distribution confidence interval

A random sample of $n=25$ has $\bar{X}=50$ and $\mathrm{S}=8$. Form a 95% confidence interval for μ

$$
\text { - d.f. }=\mathrm{n}-1=24 \text {, so } \quad t_{\alpha / 2}=\mathrm{t}_{0.025}=2.0639
$$

The confidence interval is

$$
\begin{gathered}
\bar{X} \pm t_{\alpha / 2} \frac{\mathrm{~S}}{\sqrt{\mathrm{n}}}=50 \pm(2.0639) \frac{8}{\sqrt{25}} \\
46.698 \leq \mu \leq 53.302
\end{gathered}
$$

Confidence Intervals for the Population Proportion, π
(continued)

- Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$
\sigma_{\mathrm{p}}=\sqrt{\frac{\pi(1-\pi)}{\mathrm{n}}}
$$

- We will estimate this with sample data:

$$
\sqrt{\frac{p(1-p)}{n}}
$$

Confidence Interval Endpoints

- Upper and lower confidence limits for the population proportion are calculated with the formula

$$
\mathrm{p} \pm \mathrm{Z}_{\alpha / 2} \sqrt{\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}}
$$

- where
- $Z_{\alpha / 2}$ is the standard normal value for the level of confidence desired
- p is the sample proportion
- n is the sample size
- Note: must have $n p>5$ and $n(1-p)>5$

Example

- A random sample of 100 people shows that 25 are left-handed. Form a 95\% confidence interval for the true proportion of left-handers.

$$
\begin{aligned}
\mathrm{p} \pm & \mathrm{Z}_{\alpha / 2} \sqrt{\mathrm{p}(1-\mathrm{p}) / \mathrm{n}} \\
& =25 / 100 \pm 1.96 \sqrt{0.25(0.75 \not 1100} \\
& =0.25 \pm 1.96(0.0433) \\
& 0.1651 \leq \pi \leq 0.3349
\end{aligned}
$$

that 25 se led

Determining Sample Size

Determining
Sample Size

\qquad Chap 8.43

Determining Sample Size

(continued)

- To determine the required sample size for the mean, you must know:
- The desired level of confidence (1- $\boldsymbol{\alpha}$), which determines the critical value, $Z_{\alpha / 2}$
- The acceptable sampling error, e
- The standard deviation, σ
\qquad

If σ is unknown

- If unknown, σ can be estimated when using the required sample size formula
- Use a value for σ that is expected to be at least as large as the true σ
- Select a pilot sample and estimate σ with the sample standard deviation, S

Required Sample Size Example
If $\sigma=45$, what sample size is needed to estimate the mean within ± 5 with 90% confidence?

(Always round up)

- To determine the required sample size for the proportion, you must know:
- The desired level of confidence ($1-\boldsymbol{\alpha}$), which determines the critical value, $Z_{\alpha / 2}$
- The acceptable sampling error, e
- The true proportion of events of interest, π
- π can be estimated with a pilot sample if necessary (or conservatively use 0.5 as an estimate of π)
\qquad
How large a sample would be necessary to estimate the true proportion defective in a large population within $\pm 3 \%$, with 95% confidence?
(Assume a pilot sample yields $p=0.12$)

Applications in Auditing

- Sampling provides an estimate of the sampling error

Allows auditors to generalize their findings to the population with a known sampling error.

- Can provide more accurate conclusions about the population
- Sampling isoften more accurate for drawing conclusions about large populations.

Examining every item in a large population is subject to significant non-sampling error

- Sampling allows auditors to combine, and then evaluate collectively, samples collected by different individuals.

Applications in Auditing

- Six advantages of statistical sampling in auditing
- Sampling is less time consuming and less costly
- Sampling provides an objective way to calculate the sample size in advance
- Sampling provides results that are objective and defensible.

Because the sample size is based on demonstrable statistical principles, the audit is defensible before one's superiors and in a court of law.
\qquad

- Point estimate for a population of size N :

Populationtotal $=N \bar{X}$

- Confidence interval estimate:

$$
\left.N \bar{X} \pm N\left(t_{\alpha / 2}\right) \frac{\mathrm{S}}{\sqrt{\mathrm{n}}} \sqrt{\frac{N-n}{N-1}}\right)
$$

(This is sampling without replacement, so use the finite population correction in the confidence interval formula)

Confidence Interval for Population Total: Example

A firm has a population of 1000 accounts and wishes to estimate the total population value.

A sample of 80 accounts is selected with average balance of $\$ 87.6$ and standard deviation of $\$ 22.3$.

Find the 95\% confidence interval estimate of the total balance.

Confidence Interval for

 Total Difference- Point estimate for a population of size N :

Total Difference $=N \bar{D}$

- Where the average difference, \bar{D}, is:

$$
\begin{array}{|l|}
\bar{D}=\frac{\sum_{i=1}^{n} D_{i}}{n} \\
\text { where } D_{i}=\text { audited value }- \text { originalvalue }
\end{array}
$$

One-Sided Confidence Intervals

- Application: find the upper bound for the proportion of items that do not conform with internal controls

Upperbound $=\mathrm{p}+\mathrm{Z}_{\alpha} \sqrt{\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}} \sqrt{\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}-1}}$

- where
- Z_{α} is the standard normal value for the level of confidence desired
- p is the sample proportion of items that do not conform
- n is the sample size
- N is the population size

Confidence Interval for Total Difference
(continued)

- Confidence interval estimate:

$$
N \bar{D} \pm N\left(t_{\alpha / 2}\right) \frac{\mathrm{S}_{\mathrm{D}}}{\sqrt{\mathrm{n}}} \sqrt{\frac{N-n}{N-1}}
$$

where

$$
S_{D}=\sqrt{\frac{\sum_{i=1}^{n}\left(D_{i}-\overline{\mathrm{D}}\right)^{2}}{n-1}}
$$

\qquad Chap 8.58

Ethical Issues

- A confidence interval estimate (reflecting sampling error) should always be included when reporting a point estimate
- The level of confidence should always be reported
- The sample size should be reported
- An interpretation of the confidence interval estimate should also be provided

Chapter Summary

- Introduced the concept of confidence intervals
- Discussed point estimates
- Developed confidence interval estimates
- Created confidence interval estimates for the mean (σ known)
- Determined confidence interval estimates for the mean (σ unknown)
- Created confidence interval estimates for the proportion
- Determined required sample size for mean and proportion settings

Chapter Summary

(continued)

- Developed applications of confidence interval estimation in auditing
- Confidence interval estimation for population total
- Confidence interval estimation for total difference in the population
- One-sided confidence intervals for the proportion nonconforming
- Addressed confidence interval estimation and ethical issues
Basic Business Staisitics, 11 e © 2009 Prentice-Hall, nc. Chap 8.61

