Chapter 8
Confidence Interval Estimation

Learning Objectives

In this chapter, you learn:
- To construct and interpret confidence interval estimates for the mean and the proportion
- How to determine the sample size necessary to develop a confidence interval for the mean or proportion
- How to use confidence interval estimates in auditing

Chapter Outline

Content of this chapter
- Confidence Intervals for the Population Mean, \(\mu \)
 - when Population Standard Deviation \(\sigma \) is Known
 - when Population Standard Deviation \(\sigma \) is Unknown
- Confidence Intervals for the Population Proportion, \(\pi \)
- Determining the Required Sample Size

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about the variability of the estimate

Point Estimates

We can estimate a Population Parameter … with a Sample Statistic (a Point Estimate)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Sample Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>(\mu)</td>
<td>(\bar{X})</td>
</tr>
<tr>
<td>Proportion</td>
<td>(\pi)</td>
<td>(p)</td>
</tr>
</tbody>
</table>

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals
Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observations from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - e.g. 95% confident, 99% confident
 - Can never be 100% confident

Confidence Interval Example

Cereal fill example
- Population has \(\mu = 368 \) and \(\sigma = 15 \).
- If you take a sample of size \(n = 25 \) you know
 - \(368 \pm 1.96 \times \frac{15}{\sqrt{25}} = (362.12, 373.88) \) contains 95% of the sample means
- When you don’t know \(\mu \), you use \(\bar{X} \) to estimate \(\mu \)
 - If \(\bar{X} = 362.3 \) the interval is \(362.3 \pm 1.96 \times \frac{15}{\sqrt{25}} = (356.42, 368.18) \)
 - Since 356.42 \(\leq \mu \leq 368.18 \) the interval based on this sample makes a correct statement about \(\mu \).

- But what about the intervals from other possible samples of size 25?

<table>
<thead>
<tr>
<th>Sample #</th>
<th>(\bar{X})</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Contain (\mu)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>362.30</td>
<td>356.42</td>
<td>368.18</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>369.50</td>
<td>363.62</td>
<td>375.38</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>360.00</td>
<td>354.12</td>
<td>365.88</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>362.12</td>
<td>356.24</td>
<td>368.00</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>373.88</td>
<td>368.00</td>
<td>379.76</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Confidence Interval Example (continued)

- In practice you only take one sample of size \(n \)
- In practice you do not know \(\mu \) so you do not know if the interval actually contains \(\mu \)
- However you do know that 95% of the intervals formed in this manner will contain \(\mu \)
- Thus, based on the one sample, you actually selected you can be 95% confident your interval will contain \(\mu \) (this is a 95% confidence interval)

Note: 95% confidence is based on the fact that we used \(Z = 1.96 \).

Estimation Process

- The general formula for all confidence intervals is:

\[
\text{Point Estimate} \pm (\text{Critical Value})(\text{Standard Error})
\]

Where:
- \(\text{Point Estimate} \) is the sample statistic estimating the population parameter of interest
- \(\text{Critical Value} \) is a table value based on the sampling distribution of the point estimate and the desired confidence level
- \(\text{Standard Error} \) is the standard deviation of the point estimate
Confidence Level

- Confidence Level
- Confidence the interval will contain the unknown population parameter
- A percentage (less than 100%)

Confidence Level, (1-\(\alpha\))

- Suppose confidence level = 95%
- Also written \((1 - \alpha) = 0.95\), (so \(\alpha = 0.05\))
- A relative frequency interpretation:
 - 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
 - A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

Confidence Intervals

- Assumptions
 - Population standard deviation \(\sigma\) is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:
 \[
 \bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
 \]
 where \(\bar{X}\) is the point estimate
 \(Z_{\alpha/2}\) is the normal distribution critical value for a probability of \(\alpha/2\) in each tail
 \(\sigma/\sqrt{n}\) is the standard error

Finding the Critical Value, \(Z_{\alpha/2}\)

- Consider a 95% confidence interval:
 \[
 Z_{\alpha/2} = \pm 1.96
 \]

Common Levels of Confidence

- Commonly used confidence levels are 90%, 95%, and 99%

<table>
<thead>
<tr>
<th>Confidence Level</th>
<th>Confidence Coefficient, (1 - \alpha)</th>
<th>(Z_{\alpha/2}) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>0.80</td>
<td>1.28</td>
</tr>
<tr>
<td>90%</td>
<td>0.90</td>
<td>1.645</td>
</tr>
<tr>
<td>95%</td>
<td>0.95</td>
<td>1.96</td>
</tr>
<tr>
<td>98%</td>
<td>0.98</td>
<td>2.33</td>
</tr>
<tr>
<td>99%</td>
<td>0.99</td>
<td>2.58</td>
</tr>
<tr>
<td>99.9%</td>
<td>0.998</td>
<td>3.08</td>
</tr>
<tr>
<td>99.99%</td>
<td>0.999</td>
<td>3.27</td>
</tr>
</tbody>
</table>
Intervals and Level of Confidence

Sampling Distribution of the Mean

Intervals extend from

\[\bar{x} - \frac{Z_{\alpha/2} \sigma}{\sqrt{n}} \] to \[\bar{x} + \frac{Z_{\alpha/2} \sigma}{\sqrt{n}} \]

Confidence Intervals

\((1-\alpha)\times100\% \) of intervals constructed contain \(\mu \); \((\alpha)\times100\% \) do not.

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Solution:

\[\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \]

\[= 2.20 \pm 1.96(0.35/\sqrt{11}) \]

\[= 2.20 \pm 0.2068 \]

\[1.9932 \leq \mu \leq 2.4068 \]

Interpretation

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms.
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean.

Confidence Intervals

- \(\sigma \) Known
- \(\sigma \) Unknown

Do You Ever Truly Know \(\sigma \)?

- Probably not!
- In virtually all real world business situations, \(\sigma \) is not known.
- If there is a situation where \(\sigma \) is known then \(\mu \) is also known (since to calculate \(\sigma \) you need to know \(\mu \).)
- If you truly know \(\mu \) there would be no need to gather a sample to estimate it.
Confidence Interval for μ (\(\sigma\) Unknown)

- If the population standard deviation \(\sigma\) is unknown, we can substitute the sample standard deviation, \(S\).
- This introduces extra uncertainty, since \(S\) is variable from sample to sample.
- So we use the t distribution instead of the normal distribution.

Assumptions

- Population standard deviation is unknown.
- Population is normally distributed.
- If population is not normal, use large sample.

Use Student's t Distribution

Confidence Interval Estimate:

\[
\frac{\bar{X} \pm \frac{t_{\alpha/2}}{\sqrt{n}} S}{\sqrt{n}}
\]

(\(t_{\alpha/2}\) is the critical value of the t distribution with \(n - 1\) degrees of freedom and an area of \(\alpha/2\) in each tail)

Student's t Distribution

- The t is a family of distributions.
- The \(t_{\alpha/2}\) value depends on degrees of freedom (d.f.).
 - Number of observations that are free to vary after sample mean has been calculated.

\[
d.f. = n - 1
\]

Degrees of Freedom (df)

- Idea: Number of observations that are free to vary after sample mean has been calculated.

Example: Suppose the mean of 3 numbers is 8.0

Let \(X_1 = 7\)
Let \(X_2 = 8\)
What is \(X_3\)?

If the mean of these three values is 8.0, then \(X_3\) must be 9 (i.e., \(X_3\) is not free to vary)

Here, \(n = 3\), so degrees of freedom = \(n - 1 = 3 - 1 = 2\)

(2 values can be any numbers, but the third is not free to vary for a given mean)

Student's t Table

<table>
<thead>
<tr>
<th>df</th>
<th>Upper Tail Area</th>
<th>df</th>
<th>Upper Tail Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>.25</td>
<td>.10</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
<td>3.078</td>
<td>6.314</td>
</tr>
<tr>
<td>2</td>
<td>.817</td>
<td>1.886</td>
<td>2.920</td>
</tr>
<tr>
<td>3</td>
<td>.765</td>
<td>1.638</td>
<td>2.353</td>
</tr>
<tr>
<td>Let: (n = 3) (\alpha = 0.10) (\alpha/2 = 0.05)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student's t Table

- \(t\) distributions are bell-shaped and symmetric, but have 'fatter' tails than the normal.
- As \(n\) increases, \(t\) distribution approaches normal.

The body of the table contains \(t\) values, not probabilities.

\(\alpha/2 = 0.05\)

\(\alpha = 0.10\)

\(t = 2.920\)

\(n = 3\)
Basic Business Statistics, 10/e
© 2006 Prentice Hall, Inc.

Selected t distribution values

<table>
<thead>
<tr>
<th>Confidence Level</th>
<th>t (10 d.f.)</th>
<th>t (20 d.f.)</th>
<th>t (30 d.f.)</th>
<th>t (∞ d.f.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>1.372</td>
<td>1.325</td>
<td>1.310</td>
<td>1.28</td>
</tr>
<tr>
<td>0.90</td>
<td>1.812</td>
<td>1.725</td>
<td>1.697</td>
<td>1.645</td>
</tr>
<tr>
<td>0.95</td>
<td>2.228</td>
<td>2.086</td>
<td>2.042</td>
<td>1.96</td>
</tr>
<tr>
<td>0.99</td>
<td>3.169</td>
<td>2.845</td>
<td>2.750</td>
<td>2.58</td>
</tr>
</tbody>
</table>

Note: t → Z as n increases

Example of t distribution confidence interval

A random sample of n = 25 has X = 50 and S = 8. Form a 95% confidence interval for μ.

- d.f. = n – 1 = 24, so \(t_{0.025} = 2.0639 \)

The confidence interval is:

\[
\bar{X} \pm t_{a/2} \frac{S}{\sqrt{n}} = 50 \pm \frac{2.0639 \times 8}{\sqrt{25}}
\]

46.698 \leq \mu \leq 53.302

Confidence Intervals for the Population Proportion, \(\pi \)

- An interval estimate for the population proportion (\(\pi \)) can be calculated by adding an allowance for uncertainty to the sample proportion (\(p \))

Confidence Intervals for the Population Proportion, \(\pi \)

- Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

\[
\sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}}
\]

- We will estimate this with sample data:
Confidence Interval Endpoints

- Upper and lower confidence limits for the population proportion are calculated with the formula:
 \[p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \]

 where:
 - \(Z_{\alpha/2} \) is the standard normal value for the level of confidence desired
 - \(p \) is the sample proportion
 - \(n \) is the sample size
 - Note: must have np > 5 and n(1-p) > 5

Example

- A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers.

 \[p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \]
 \[= 25/100 \pm 1.96 \sqrt{0.25(0.75)/100} \]
 \[= 0.25 \pm 1.96(0.0433) \]
 \[= 0.1651 \leq \pi \leq 0.3349 \]

 Interpretation:
 - We are 95% confident that the true percentage of left-handers in the population is between 16.51% and 33.49%.
 - Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

Determining Sample Size

- The required sample size can be found to reach a desired margin of error \(e \) with a specified level of confidence \((1 - \alpha) \).

 - The margin of error is also called sampling error
 - the amount of imprecision in the estimate of the population parameter
 - the amount added and subtracted to the point estimate to form the confidence interval.
Determining Sample Size

For the Mean

\[
X \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = e = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
\]

Sampling error (margin of error)

To determine the required sample size for the mean, you must know:

- The desired level of confidence \((1 - \alpha)\), which determines the critical value, \(Z_{\alpha/2}\)
- The acceptable sampling error, \(e\)
- The standard deviation, \(\sigma\)

Now solve for \(n\) to get

\[
n = \frac{Z_{\alpha/2}^2 \sigma^2}{e^2}
\]

If \(\sigma\) is unknown

If unknown, \(\sigma\) can be estimated when using the required sample size formula

- Use a value for \(\sigma\) that is expected to be at least as large as the true \(\sigma\)
- Select a pilot sample and estimate \(\sigma\) with the sample standard deviation, \(S\)

Required Sample Size Example

If \(\sigma = 45\), what sample size is needed to estimate the mean within \(\pm 5\) with 90% confidence?

\[
n = \frac{Z^2 \sigma^2}{e^2} = \frac{(1.645)^2 (45)^2}{5^2} = 219.19
\]

So the required sample size is \(n = 220\) (Always round up)

If \(\sigma\) is unknown

- If unknown, \(\sigma\) can be estimated when using the required sample size formula
 - Use a value for \(\sigma\) that is expected to be at least as large as the true \(\sigma\)
 - Select a pilot sample and estimate \(\sigma\) with the sample standard deviation, \(S\)
Determining Sample Size

To determine the required sample size for the proportion, you must know:

- The desired level of confidence (1 - \(\alpha \)), which determines the critical value, \(Z_{\alpha/2} \)
- The acceptable sampling error, \(e \)
- The true proportion of events of interest, \(\pi \)
 - \(\pi \) can be estimated with a pilot sample if necessary (or conservatively use 0.5 as an estimate of \(\pi \))

Required Sample Size Example

How large a sample would be necessary to estimate the true proportion defective in a large population within ±3% with 95% confidence?

(Assume a pilot sample yields \(p = 0.12 \))

Solution:

For 95% confidence, use \(Z_{\alpha/2} = 1.96 \)
- \(e = 0.03 \)
- \(p = 0.12 \), so use this to estimate \(\pi \)

\[
\begin{align*}
 n &= \frac{Z_{\alpha/2}^2 \pi(1 - \pi)}{e^2} \\
 &= \frac{(1.96)^2 (0.12)(1-0.12)}{(0.03)^2} \\
 &= 450.74
\end{align*}
\]

So use \(n = 451 \)

Applications in Auditing

- Six advantages of statistical sampling in auditing
 - Sampling is less time consuming and less costly
 - Sampling provides an objective way to calculate the sample size in advance
 - Sampling provides results that are objective and defensible.
 - Because the sample size is based on demonstrable statistical principles, the audit is defensible before one’s superiors and in a court of law.

- Sampling provides an estimate of the sampling error
 - Allows auditors to generalize their findings to the population with a known sampling error.
 - Can provide more accurate conclusions about the population

Confidence Interval for Population Total Amount

- Point estimate for a population of size \(N \):
 \[
 \text{Population total} = \hat{N} \overline{X}
 \]

- Confidence interval estimate:
 \[
 \overline{X} \pm N \left(t_{\alpha/2} / \sqrt{n} \right) \frac{S}{N-n} \sqrt{\frac{N-n}{N-1}}
 \]

(This is sampling without replacement, so use the finite population correction in the confidence interval formula)
Confidence Interval for Population Total: Example

A firm has a population of 1000 accounts and wishes to estimate the total population value. A sample of 80 accounts is selected with average balance of $87.6 and standard deviation of $22.3.

Find the 95% confidence interval estimate of the total balance.

Example Solution

The 95% confidence interval for the population total balance is $82,837.52 to $92,362.48.

$$N\bar{X} \pm N\left(t_{\alpha/2}\right) \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

$$= (1000)(87.6) \pm (1000)(1.990)(\frac{22.3}{\sqrt{80}}) \sqrt{\frac{1000-80}{1000-1}}$$

$$= 87600 \pm 4762.48$$

The 95% confidence interval for the population total balance is $82,837.52 to $92,362.48.

Confidence Interval for Total Difference

- **Point estimate for a population of size N:**
 $$\text{Total Difference} = \overline{D}$$
- **Where the average difference, \(D \), is:**
 $$\overline{D} = \frac{\sum D_i}{n}$$
 where \(D_i \) = audited value - original value

Confidence Interval for Total Difference (continued)

- **Confidence interval estimate:**
 $$\overline{N\overline{D}} \pm N\left(t_{\alpha/2}\right) \frac{SD}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$
 where
 $$SD = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}}$$

One-Sided Confidence Intervals

- **Application:** find the upper bound for the proportion of items that do not conform with internal controls
 $$\text{Upperbound} = p + Z_{\alpha} \sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{N-n}{N-1}}$$
 where
 - \(Z_{\alpha} \) is the standard normal value for the level of confidence desired
 - \(p \) is the sample proportion of items that do not conform
 - \(n \) is the sample size
 - \(N \) is the population size

Ethical Issues

- A confidence interval estimate (reflecting sampling error) should always be included when reporting a point estimate
- The level of confidence should always be reported
- The sample size should be reported
- An interpretation of the confidence interval estimate should also be provided
Chapter Summary

- Introduced the concept of confidence intervals
- Discussed point estimates
- Developed confidence interval estimates
- Created confidence interval estimates for the mean (σ known)
- Determined confidence interval estimates for the mean (σ unknown)
- Created confidence interval estimates for the proportion
- Determined required sample size for mean and proportion settings

(continued)

- Developed applications of confidence interval estimation in auditing
- Confidence interval estimation for population total
- Confidence interval estimation for total difference in the population
- One-sided confidence intervals for the proportion nonconforming
- Addressed confidence interval estimation and ethical issues