1. ABSTRACT

In this research project we introduce a model of branching stochastic process
which takes into account the incubation period of the life of individuals. We
demonstrate that such processes may be treated as a two-type age-dependent
branching process with a periodic mean matrix. In the case when the Malthu-
sian parameter exists we derive the extinction probability and the asymptotic
behavior of the mean number of individuals. Exact formulas for the expected
extinction time and for the distribution of the number of generations to ex-
tinction are obtained. Applications in determining of the optimal vaccination
rate in SIR epidemics are also demonstrated. In the case when the Malthu-
sian parameter does not exist study of the process requires additional re-
strictions on the life and incubation time distributions which define so called
sub-exponential family. We obtain certain new properties of sub-exponential
distributions, in particular, describe a subclass, which is closed with respect
to convolution. Using these results we derive asymptotic behavior of the first
and second moments and of the probability of non-extinction. We also prove
a limit theorem for the process conditioned on non-extinction.
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2. INTRODUCTION AND DEFINITION OF THE PROCESS

In applications of branching processes one may have a situation, when new
individuals are born not only during life time or at time of death of the parent,
but also some period of time (called incubation period) after her death or
departure from a given region. For example, in fish or turtle populations
the individuals lay a large number of eggs during the spawning period and
leave the spawning ground. After an incubation period which depends on
the weather, water temperature and other factors, these eggs generate new
individuals. Another example can be found in plant populations, where the
plants produce a large number of seeds, which generate new plants after an
incubation period. The last example relates to the spreading of infectious
diseases, where the time span elapsing from the time of infection to the
development of symptoms is referred to as the incubation period (see Mode
and Sleeman™, p. 23). In this project we study a modification of the
branching stochastic process which takes into account the incubation period
of individual’s life time.

We consider a population of individuals of the same type who colonize a
region. Assume that at time zero we have a single individual (ancestor) of
age zero labelled I. This individual lives a random time L;. At the end of
the time interval L; the individual dies or leaves the region (emigrate) after
laying a random number v; of eggs (seeds). Each egg F, after a random
incubation period 7g, independently of the others generates {g individuals
of age zero, with P{{g = 1} = 1 — P{¢g = 0} = p. This means that each
egg generates one individual with probability p and will be ”destroyed” with
probability ¢, 0 < ¢ < 1, p+ g = 1. These new individuals, independently
of each other, behave in the same manner as the initial ancestor, i.e. live
a random period of time and lay a random number of eggs, before they
die or emigrate, and so on. In branching processes the ”life-history” of an
individual is associated with its life span and offspring size. In our process
the life-history of individual I is given by the pair (L, v;) and, similarly, the
life-history of egg E is given by (7g,&g). The key assumption in branching
processes is independence of lives of distinct individuals, which means in our
process that the pairs (L;,v;) and (7g, {g) are independent and, for distinct
I and E, are independent copies of some pairs (L, ) and (7, &) respectively.

It is known that ”susceptible-infectious-removed” (SIR) epidemic model
can be approximated by branching processes, when the initial number of
susceptible individuals is large ( see Andersson and Britton!l, p. 22). More



precisely, in SIR epidemic models it is assumed that individuals are at first
susceptible, if they get infected, they become infectious and remain so for
some time, after which they recover and become immune. An individual
is said to be removed, if he (or she) has recovered and is immune or dies,
and does not further participate in the epidemic. In the framework of the
epidemic models L and v may be understood as the infectious period and
the number of contacts during the infectious period of a single infective in-
dividual. Naturally, the variable 7 is the incubation period and ¢ may be
considered as immune rate or as the rate of vaccination. We assume that
p > 0 to exclude the trivial case, when the process will extinct in the first
generation.

Branching processes have been used to approximate the stochastic models
of the epidemic ever since Bartlett!¥) and Kendall 3], Recent work on the
subject have been done by Ball and Donnelly®, Farrington and Grant®! and
Farrington et all® . In Chapter 3 of Andersson and Britton! a systematic
study of SIR epidemic models, based on the branching approximation is
presented. The recent monograph by Mode and Sleeman™ is an excellent
source on applications of stochastic processes in epidemiology. In particular,
in Chapter 2 of this monograph, possible distributions of the incubation
period are discussed.

In the case when the Malthusian parameter exists asymptotic properties
of process X (t) can be derived using results from the theory of multi type pro-
cesses. However in subcritical processes, which is the case in most epidemic
models, the Malthusian parameter may not exist. In this case the study of
the process requires more delicate analysis and needs additional restrictions
on the life time distributions. These restrictions define a class of so called
sub-exponential distributions, which have tails that decay at a slower rate
than exponential. The family of sub-exponential distributions was first intro-
duced by Chistyakov!'™, who studied asymptotic properties of the single type
age-dependent process with sub-exponential life-time distributions. In Ref
(18] a class of distributions which is larger than sub-exponential is described.
Some of distributions from this class may have tails which do not decay at a
slower rate than exponential. We note that the sub-exponential class includes
distributions, such as, Weibull, with decreasing hazard function, Log-normal,
Log-logistic, Pareto and some of other heavy tailed distributions. These dis-
tributions are very important in applications. Possibilities of using the heavy
tailed distributions in modelling of the incubation period of infectious dis-
eases, including HIV or AIDS, discussed in Chapter 2 of Ref'4.
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This situation, in particular, explains the interest in the study of the
family of sub-exponential distributions by a number of authors, who have
investigated various aspects of the family. However an important problem
on closure of the family under convolutions was open until the 90’s. In Ref
191 an example, demonstrating that the sub-exponential family is not closed
under convolution, is constructed.

In the monograph?”, p. 201, Ch. J. Mode mentions that the extension of
the results of Chistyakov '” to multitype branching processes, in which the
life-span distributions are not the same, is an important research problem.
We address this problem in a case of two-type process of a special form. For
this purpose we first extend some properties of sub-exponential distributions
related to the finite number of convolutions. In particular we define a subclass
of the sub-exponential family, which is closed with respect to the convolution.
This extension allows us to study the limiting behavior of the process X(t) as
t — oo and obtain results extending known limit theorems in the case when
the Malthusian parameter does not exist. We note that consideration of
the problems related to sub-exponential distributions and to the asymptotic
behavior of the process, when the Malthusian parameter does not exist, was
not initially planned in the project.

The report is organized as follows. In Part 3 we provide main results and
discussion. In Section 3.1 we demonstrate that integral equations for the gen-
erating functions of the process with incubation and existence of solutions
can be derived using similar equations for a multi type age-dependent process
and also define a threshold parameter of the process. In Section 3.2 an equa-
tion, which allows to derive the extinction probability is obtained. In Section
3.3 exact formulas for the mean extinction time are derived. Section 3.4 is
devoted to the distribution of the number of generations before extinction in
the linear fractional case. Interesting applications in SIR epidemic models
are provided in Section 3.5. Section 3.6 contains a theorem providing asymp-
totic formulas for the mean of the process, when the Malthusian parameter
exists, in all cases of criticality. In Section 3.7 we provide results related to
sub-exponential distributions. In Sections 3.8 and 3.9 asymptotic behavior
of the first and second moments of the process and the limit theorems in the
non-malthusian case are discussed. In Section 4 we provide conclusions and
recommendations. Sections 5 and 6 contain activities related to the project
and a list of publications respectively.



3. RESULTS AND DISCUSSION

3.1 EQUATIONS FOR GENERATING FUNCTIONS AND
EXISTENCE OF SOLUTIONS

The process that has been described can be given by the distributions of pairs
(L,v) and (7,&). If the offspring number does not depend on the life span
of the parent and also the fate of the egg is independent of the incubation
period, then the marginal distributions

G1(t) = P{L <t}, Go(t) = P{r <t}, t >0
with support on [0, 00) and distributions
pr=Plr="~k}, k>0, p=P{{=1}=1-P{{=0}

define the process completely.

Realizations of the process are given by the vector X(t) = (X;(t), Xa(t)),
where X () is the number of individuals and X5(¢) is the number of eggs.
The process X(t) can be considered as a multi-type age-dependent process
with types of individuals K; and Ks. Individuals of type K; generate only
individuals of type Ky and vice versa i.e. evolution of the process has the
form of transformations K; — K, and Ky — K; . The components of the
vector X (t) are, naturally, the numbers of individuals of types K; and K, at
time t. Let s* = s7's5? for any two vectors s = (s1, $2), X = (21, 22) and

Fi(t,s) = E[s*Y|X(0) = &],i = 1,2,

where |s| < 1, g; = (014,02;) and ¢;; is the Kronecker delta (0; = 1,9;; =
0,7 # j). We also denote by ®(s) and ¢(s) the generating functions of v and
¢ respectively:

O(s) =Y prs®, @(s) =q+ps,
k=0
and m = Ev =®'(1), 0> = Ev(v—1) = ®"(1), pp = P{v = k}.

Proposition 1. The probability generating functions F'(t,s) for|s| < 1,i =
1,2, satisfy the following non linear integral equations

Fi(t,s) = s1(1 — Gi(1) +/0 O(F2(t — u,8))dG (u), (3.1)
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t
F2(t,s) = so(1 — Go(t)) + qGo(t) —|—p/ F'Y(t — u,8)dGo(u). (3.2)
0
with initial conditions F'(0,8) = s;,1 = 1,2.

Denote X,, = (X}, X2), n > 0, where X!, 7 = 1,2, is the number of individ-
uals of type K; in the n th generation. It is well known that X,,,n > 0, is a
simple two type Galton-Watson process with offspring generating functions
Fi(s) = E[s*|Xy = g],i = 1,2. Tt follows from the definition of the process
that

Fi(s) = ©(s2), F*(s) = p(s1). (3.3)

By substitution we obtain from equations (2.1) and (2.2) that
FQ(t, S) = (1 — Gg(t>)82 + QGQ(t) +p81(G2 — G1 * G2<t)> —l—pC(t), (34)

where
() :/0 /0 B(F2(t — u— x,8))dCh (x)Galu),

and * stands for the convolution. The last equation says, if there is an egg at
time zero, then at time ¢ with probability 1 — Go(t) it still exists, with prob-
ability G2 (t) the incubation period ends but no individual is born and with
probability p(Ga(t) — Gy * G5(t)) after the incubation period an individual is
born and still alive. The last term in (3.4) takes care of the case, when the
individual dies after laying a random number of eggs.

If Go(0+) = 1, i.e. no incubation period, we obtain from (3.2) that F?(¢,s) =
o(F1(t,s)). Consequently, the equation (3.1) will take the form

F(t,8) = 51(1 — G (1) + /0 B(p(FL(¢ — u, 8)))dGh (1),

In this case process X(t) is the following modification of single-type age-
dependent process. The reproduction of individuals is according to the usual
branching process, however, after reproduction, each of the new born indi-
viduals may emigrate (or may be killed) with probability ¢q. Note that this
model is close to the branching process with disasters, considered by Kaplan
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et al.', where individuals participating in the process, may disappear at
renewal moments of a renewal process. If G2(0+) = 1 and p = 1, we obtain
the single type Bellman-Harris process.

We denote by M = (M;;, i,j = 1,2) the matrix of expected offspring of a
single individual, where 7 and j denote types of the parent and of the offspring
respectively. It is clear that

OF(s)

M;; = T|s:la
J

where 17 = (1,1). Therefore we have due to (3.3) that

(1)

where m = FEv. It is easy to see that M has eigenvalues +,/pm. Thus

p = /pm is the Perron eigenvalue and corresponding positive right and left

eigenvectors U = (u!,u*)T, V = (v, v,) are

o ) VLo )

The eigenvectors are normalized such that UT1 =1,V U = 1.

We have 2321 EXiu? = pu' and S22 EX}v; = pv;. Concerning the second
factorial moments b}, = E[X!X][], j # k and b}; = E[X}(X} — 1)], we find
due to (2.3) that by, = 0* and b, = 0 for all other possible values of 4, j and
k. Therefore

2
35 = = gV
e 2(p + /pm)

2 2

i

Following the general theory, we call process X(t¢) subcritical, critical and
supercritical, if mp < 1,mp = 1,02 > 0 and mp > 1 respectively.

Since X(t) is two type age-dependent branching process with the offspring
distribution of a special form, existence of solutions for equations (3.1),
(3.2) and (3.4) follows from corresponding existence theorems in the general
theory. For example, it follows from Theorem 8.2.1 ( see Ref.[16] p. 234)
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that, if G;(0+) = 0,7 = 1,2, and Ev < oo, then the system of equations
(3.1) and (3.2) has a unique solution (F!(t,s), F?(t,s)) in the class of prob-
ability generating functions. The condition G;(0+) = 0,7 = 1,2, excludes
the situation of instantaneous death of the individuals and the case of zero
incubation period. From now on we assume that G;(t),7 = 1,2, have no
atoms at point zero.

3.2 THE EXTINCTION PROBABILITY

First we discuss the probability of ultimate extinction of the process X(t).
Since the state 0 is absorbing, it can be defined as

Q; = P{X(t) =0, for somet > 0|X(0) =¢;}

for the process starting with one individual of type K;. Since, when G;(0+) =
0,7 =1,2,

{X(t) =0, for somet >0} ={X, =0, for somen > 0},

we just need to find the extinction probability of the Galton-Watson process
X, n > 0, constituted by generation sizes of X(t).

Proposition 2. The extinction probability Qs is the smallest non-negative
root of the equation

O(z) = (3.5)
and Q1 = (Q2 — Q)/P-

Remark. It is obvious that the equation (3.5) always has at least one root
x = 1. Since ®(z) is convex and increasing, it may have another root which
is less than one. If p = 1, we have a situation, when an individual who had a
contact will surely be infected. In this case the extinction probability of the
process is the smallest non-negative root of ®(x) = x and coincides with the
extinction probability of the contact process. Figure 1 shows that, generally
speaking, the extinction probability of the process with vaccination is greater
than the extinction probability of the contact process. If the vaccination rate
is large enough, we may have a situation, where the epidemic becomes ex-
tinct while the process of contacts explodes (for example, when m > 1 but
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mp < 1).

It follows from Proposition 2 that, if mp < 1, then X(¢) become extinct with
probability 1 and, if mp > 1, then there are positive probabilities 1 — Q;,7 =
1,2, that the process explodes.

3.3 THE TIME TO EXTINCTION

Now we consider an important variable related to survival of the process,
namely the time to extinction. It is defined as

T¢ = min{t : X(t) = 0|X(0) = &;},i = 1,2.

The time to the extinction measured by the number of generations can sim-
ilarly be defined as

N, =min{n: X, =0|X, =¢;},i =1,2.

Now we use a traditional notation for the individuals participating in our
process. We label the individuals by elements of the set [ = U N* N =
{1,2,..}, N¥ = N*=1x N, N° = {0}. The initial ancestor will have the label
0. The direct offsprings of the initial ancestor we label by (0, 1), (0,2),...,
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and so on. Similarly we denote by v = (v,j) = (0,41, ...,%,7) the jth
direct offspring of the individual v = (0,41, ...,7;). For given two vectors
v = (0,41, ....1%) and X = (J1, ..., jm) the ordered pair (v, A) we understand
as k+m+1 dimensional vector (0, i1, ..., i, j1, -.-, jm)- Note, for example, that,
if the initial ancestor is an egg, then the population of the first generation
contains only individual (0, 1) and the individuals of the second generation
are (0,1,1), (0,1,2) and so on.

If N} = n, then there is at least one individual v = (0, 41,43, ..., 4,_1) in
(n — 1)th generation. Therefore the survival time T¢ of the process is equal
to the sum of the life time of v and the life times of all parents of . Thus
we obtain the following relationship between T¢ and N¢:

Zi\;&{?([ﬁ‘ +73), if n is even,
Ty =
b=
1_
Zg? 1)/2(Li +7;) + Lo, if n is odd,
d

where L;, 7;,7 > 0 are independent random variables such that L; 2z L,,=1
and "d” means equality of distributions. Similarly we find

Z?E/Q(Li +73), if n is even,
T? =
2
2_
SN2 sy b, ifn s odd.

Since the life times and offspring numbers of the individuals are indepen-
dent, we conclude that in the above random sums summands and the number
of summands are independent. Therefore, when EN}, FL and ET are finite,
by simple total probability arguments we obtain:

ET} = BT ENG + ELoET AN is odd},
(3.6)
BT = ELEET N2 4 ErBLPIN? s odd).

It is not surprising that the expected time to extinction essentially depends
on the means of the infectious and incubation periods.
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3.4 DISTRIBUTION OF THE NUMBER OF GENERATIONS
BEFORE EXTINCTION

Now we focus our attention on the distribution of N¢. The distribution of
the number of generations before the extinction in branching processes has
received little attention in the literature. Harris”! considered the special case
when the number of offspring is at most 2. In Karlin and Taylor™ (page
318) certain results for the distribution of the number of generations before
extinction are presented, when the offspring distribution is geometric. In
Farrington and Grant!®! the generation distribution is derived for Bernoulli,
geometric and Poisson offspring distributions. In the recent book by Haccou
et al. (see Refl®!, p. 115) lower and upper bounds for the distribution in
the general case are obtained. All these results are related to simple Galton-
Watson branching processes.

We obtain exact formulas for the distribution of the number of generations
before the extinction N, i = 1,2, for the process with incubation, in the case,
when the offspring generating function has the form of a linear fractional
transformation. Namely, we assume that

a+ s
O(s) = T os (3.7)
where 0 < § < 1. Since ®(s) is the probability generating function, coef-
ficients in Taylor expansion must be positive. Therefore (3.7) includes the
general case of the ratio of two arbitrary linear functions. Note that prob-
ability generating functions of some known distributions, such as Bernoulli,
first success, geometric or modified geometric distributions have a form of
(3.7). Probability generating distributions of this form are the only known
non-trivial generating functions whose iterates can explicitly be computed.
We denote Fi(s) = E[s*"|Xy = ¢;], i = 1,2, where X,, is the embedded
Galton-Watson process, defined in the proof of Proposition 1. Then Fj(s) =
Fi(s) and

Fl(s) = Fi(F'(s), F*(s)), i =1,2. (3.8)
Since {N¢ < k} = {X}, = 0|X = ¢;}, we obtain that for any k& > 1
P{N} <k} = Fi(0), i = 1,2. (3.9)

Let mi(s) = ®(p(s)), m(s) = @(®(s)) and m;(k,s), i = 1,2, be kth

functional iteration of m;(s). Using relations (3.3) and (3.8) we obtain

Fy(s) = mi(k, s:) (3.10)
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for i« = 1,2 and for the odd iterations we have

Fyi1(s) = mi(k, @(s2)), Fypp1(s) = malk, o(s1)). (3.11)

Proposition 3. If ®(s) has the form of (3.7) and mp = 1, then
a) P{N} <2k} =1—(1+ Apk)™;
b) P{Ny <2k+1}=1—(1—po)(1+ Ap(Ll —po)k)™";
c) P{Ng <2k} =1—(1+Ak)Y
d) P{N§ <2k+1} =1—p(1+ Apk)™;
where A = 6(1 —6)71, pg = ®(0) and k =0,1,2, ...

The next proposition is devoted to the noncritical case.
Proposition 4. If ®(s) has the form of (3.7) and mp # 1, then
a) P{Nj <2k} =1—(pd —a—qB)(pd — (o +¢B)AE) ™,

b) P{N} <2k+1}=1—(pd —a—qB)(pd + A AR)~L;
c) P{NG <2k} =1— (6 —q—pa)(d— (q+pa)A§)~"
d) P{N <2k+1}=1— (6 —q—pa)(d + Ay AN,

where Ag = p~H(a+ B)/(1 = a), Ay = (1—po) ' (ppod — a — ¢f), Ay =
p (g6 —q—pa) and k=0,1,2, ...

Now we consider some particular cases of the offspring distribution.
Example 1. Let us consider the Bernoulli offspring distribution, i.e. ®(s) =

po+p1s. Then from Proposition 4 we obtain that P{N{ > 2k} = (pp,)*, P{N} >
2k + 1} = pi(pp1)* and P{NZ > 2k + 1} = p(pp1)*. Therefore we find, when
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pp1 <1,
EN} = ZP{N1 >n} =

(3.12)
Since P{N} = 2k + 1} = po(pp1)*, we get P{N¢ is odd} = po(1 — ppy)~L.
Hence we conclude from this and relation (3.6) that

(EL+ET)(14+p1) po(EL— ET)
2(1 — pp1) 2(1 —pp1)

By similar arguments we obtain from (3.6)

ET) =

(EL+ ET)(14+p) q(ET—EL)
2(1 —pp1) 2(1 —ppr)

ET? =

Example 2. Let now the offspring distribution be geometric i.e. p, =
d*(1—d), 0<d<1, k=0,1,2,... Then
1—d d
@ = = —.
S R g

In this case we obtain from Proposition 4 that, if mp # 1, then

1 — (mp)~!
1 — (mp)=k-1

1 — (mp)~!
1+m=Y(1 = (pd)=')(mp)=*’

We can derive similar formulas for N? from parts (c) and (d) of Proposition 4.

P{N; <2k} =1- (3.13)

P{Ny <2k+1}=1-— (3.14)

3.5 APPLICATIONS IN SIR EPIDEMIC MODELS

Example 3. The rate of vaccination (proportion of vaccinated individuals in
the population) is an important parameter in the preventive medicine. The
formulas (3.13) and (3.14) allow to compute desired rate of vaccination to
have the epidemic ceased before a given generation with a given probability
for a given mean number of contacts. For a numerical example, if the mean
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number of contacts is 4, what should be the vaccination rate for the epidemic
to cease before the third generation with probability say 0.957 We denote by
N the extinction generation number of the population of infective individuals.
Since in our model the infective individuals correspond to generations labelled
by even numbers, we obtain from equation

P{N <2} = P{N; <4} =0.95

and formula (3.20) the following:
1—(4p)~"
1—(4p)~?
which is equivalent to ((4p)~' +0.5)? = 19.25. From this we find p = 0.0643.
Consequently we conclude that the vaccination rate should be ¢ = 0.9357 ,
i.e. almost 93.5 per cent of individuals must be vaccinated. For illustration

we provide the values of the vaccination rate for different mean numbers of
the contacts in Table 1.

= 0.05,

m |2 3 4 5 6 7 8 9
q | 0.8714 0.9143 0.9357 0.9486 0.9571 0.9633 0.9679 0.9714

Table 1. Vaccination rate for different mean numbers of the contacts.

As it was mentioned before, the contact process is the simple Galton-
Watson process with the offspring generating function ®(s). Therefore the
mean number of contacts can always be estimated using known statistical
estimators (see Refl'”) p. 47, for example).

Example 4. Now we consider an example of spread of infections such as
measles and mumps in vaccinated school populations presented in Nkowane
et al.’ and Gustafson et alll. In these papers the authors identified four
generations of spread, for highly vaccinated populations. Using our results,
we can determine the probability that a single infective generates an outbreak
of more than four generations, depending on the rate of vaccination. Let the
mean number of contacts during the infectious period be 4. Let again N be
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the extinction generation number of the population of infective individuals.
In this case we have

1—
P{N>4}:P{N(}>8}:1

Table 2 gives some numerical examples.

q 0.2 0.4 0.6 0.8 0.9
P{N > 4} | 0.6896 0.5907 0.4145 0.1218 0.0155

Table 2. Change of the probability with the vaccination rate.

0.6

0.5

0.4

P{N>4}

0.3

0.2

Figure 2.

Figure 2 shows, if the vaccination rate is less than 0.6 outbreaks of more
than four generations are more likely. Around 12 percent of infections will
lead to such outbreaks, if the vaccination rate is 0.8.

In some applications modified geometric distribution, in which zero has
not necessarily the probability 1 — d, may be appropriate. It can be given as

P,=b(1-d)d" " k=1,2,..
and Py = 1 — b. Note that its generating function has also form of (3.7) and

the propositions 3 and 4 are applicable for this distribution as well.
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3.6 THE EXPECTED VALUE

If an epidemic is initiated by a single infective at time zero, what is the
expected number of infective individuals and individuals who had a contact
with an infective at time t? This is a standard problem in the theory of
branching processes and the long run behavior of the expectations is not
surprising. However, obtaining an explicit dependence of constants on ini-
tial parameters in asymptotic formulas is important for applications. In this
section we derive asymptotic formulas for the expectation with explicit con-
stants. Hence we consider expected values

Al(t) = BIX;(1)[X(0) =&, i =1,2.

The matrix M? = (a;;, 4,7 = 1,2), where a; = 0, i = 1,2 and

a9 = m/ e "dG (), ay :p/ e dGy(z),
0 0

plays an important role in the study of asymptotic behavior of the expected
values. The Malthusian parameter 6 of the process is defined from condition
po = 1, where py is the Perron eigenvalue of M?. Since py = (a12a21)"/? and
the random variables L and 7 are independent, the Malthusian parameter is
the root of equation

mpEe 004 — 1. (3.15)

Note that, if mp = 1, then 8 = 0 and, if mp > 1, then 8 > 0. When mp < 1,
then # may not exist. But, if it does exist, then 6 < 0.

The right and left eigenvectors of M? corresponding to the Perron eigen-
value are

_ Po 21 g _ (G211 po Q21+ Po
UG — 3 P V9 - ; .
a1 + po az1 + pe 2pg 2a91

When the Malthusian parameter exists, they will take the form
1 1

—(17 021), Vo = R

1+ 921 2

Note also that U1 =1, V4U, = 1, where 17 = (1,1).
We define constants A%, C1, i, j = 1,2, as following

Ug = (]_, a12).

Ai . (512EL + 52@'E7— i 51ﬂTLET + 52ipEL

i EL+ Er 9 FL+Er 7
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c;

2D ’
where 0;; is the Kroneker delta and
D= aQ;m/ ue "dG (u) + %/ ue” " dGy(u), (3.16)
0 0

Di = /oo (1 — () du.

We also need the following condition in subcritical case, when 6 < 0:
/ u?e " dGy(u) < 00,i =1, 2. (3.17)
0

Note that similar condition is also required in the case of Bellman-Harris
process (see Ref.'% p. 312).

Theorem 1. Let m < oo and the Malthusian parameter exists and 1,7 = 1, 2.

a) If mp =1, then lim;_, AL(t) = A% ;

J J

b) If mp > 1, then lim;_ e—etA;‘,(t) — C’} :

¢) If mp <1 and (3.17) is satisfied, then again lim, . e " AL(t) = CL.

Thus Theorem 1 provides asymptotic formulas for the expected values of the
process in the case, where the Malthusian parameter exists. When it does
not exist, as it was mentioned before, we need additional restrictions, which
define the class of sub-exponential distributions.

3.7 SUB-EXPONENTIAL DISTRIBUTIONS

We consider cumulative distribution functions of positive random vari-
ables. Following Chistyakov !7 define three classes of distributions.

Definition. Let A(t),t € [0,00) be cumulative distribution of a positive
random variable.
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a) We say A(t) € Ry, if for any e >0

/ T A = oo (3.18)

b) Function A(t) € Ry, if for any fized u > 0

. 1= A(t—u)
lim ————— = 1. 1
M A (3.19)
¢) Function A(t) € R,,n > 2, if
1= AT(t)
TR (320

We note that, as it was proved in Ref '), ®, C R, for any n > 2 and
also By C Ry C RNy. Distributions belonging to the class Ry are called
sub-exponential, describing the property of their tail which decay at a rate
slower than exponential (see Ref 2l p.147, for example). We obtain certain
properties of sub-exponential distributions. Let 7 and 75 be independent
nonnegative random variables and A;(t) = P{r; <t},i=1,2.

We denote C(t) := (1 — Ay(t))/(1 — Ax(t)). Let A;(t),i = 1,2 be such
that there exists the limit
tlim C(t) =C € [0, 0. (3.21)

The following lemma gives a new property of the sub-exponential family
related to convolutions.

Lemma 1. If A;(t) € Re,i = 1,2 and (3.21) is satisfied, then

y 1 — (Ag x As)(t)

—1+C. (3.22)

We denote A(t) = (A; * Ag)(t) and by R% the subclass of Ry such that for
each pair A;(t) € R5,7 = 1,2 the condition (3.21) is satisfied. The following
result is important in the proof of main theorems.
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Lemma 2.

a) If A;(t) € Ro, i = 1,2 and (3.21) is satisfied, then A(t) € Ry.

b) The subclass of sub-exponential distributions R is closed with respect to
the convolution.

Applying lemmas 1 and 2 we obtain the following result, which has direct
application in proofs of our theorems.

Lemma 3. If A;(t) € Ra,i = 1,2 and condition (3.21) is satisfied, then for
each i > 1 ‘

1= (Ayx A)(t) 1 ,

1 _ |

i 1— A(t) 170’

(3.23)

3.8 ASYMPTOTIC BEHAVIOR OF MOMENTS

If an epidemic is initiated by a single infective at time zero, what is the
expected number of infective individuals and individuals who had a contact
with an infective at time t?7 This is a standard problem in the theory of
branching processes when the Malthusian parameter does exist. However,
when the parameter does not exist, the problem requires more refined anal-
ysis and additional restrictions on the distributions of the incubation and
infectious periods.

First we consider the following moments of the process

Aj(t) = EIX;(6)[X(0) = &, By, (t) = EIX;(6)(Xk(t) — 0;5)[X(0) = &i],
(3.24)
where 7, j,k = 1,2. We also denote A(t) = (A}(t),i,j = 1,2) the matrix of
expected values of the process.
Assume that there exists ¢ € [0, 00| such that

1 — Go(t)
lim ———= =c. 3.25
e loGit) © (3:25)
We also denote G = G x G, a; = 01; + d2;¢ and b; = d1;,cm + do;p. We put
by definition ¢(1+ ¢)™! = 1, when ¢ = cc.
We now formulate results which are devoted to the asymptotic behavior
of the first and second moments of the process. We prove a theorem in more
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general case when each type of individuals may generate a random number
of individuals of another type. This would relate to a situation, when an egg
may generate more than one new individuals.

Let F'(s1,s9) = F'(s;), i = 1,2 be the offspring generating functions of
types 17 and Ty and

_ dF'(s))

d*F'(s;)
i ds

|Sj:17 BZ -

, 2
j dsj

be the offspring mean and the second moments.

|s]-:17 Zaj: ]-72

Theorem 2. Let miymy < 1, Gi(t) € Ro,i = 1,2 and (3.25) is satisfied.
Then

. A(t) _ 1 (1 cm1>

tmoo 1 = G(t) (1+c¢)(1—mymg) \ m2 ¢

b) If in addition B; € (0,00), then fori,j, k =1,2

A
t—oo 1 — G(t)

It is easy to see that, if G(04+) = 1 and my = 1, from Theorem 1 we
obtain the asymptotic formula for the first moment of the single-type age
dependent process (Theorem 3B(ii) in Ref 2, p. 152). In particular, for the
process with incubation we obtain the following result.

Corollary. Let mp < 1, Gi(t) € Ro,i = 1,2 and (3.25) is satisfied. Then
fori,j, k = 1,2 and expected values of the process defined in (3.24)

a) '
. A;(t) dija; + (1 — 045)b;
lim = )
BET2GE - 1+ —mp)
b) If in addition o* € (0,00), then fori,j, k =1,2
lim 7B§k(t) =
t—oo 1 — G(t)
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The proof of Theorem 2, which is based on the renewal theory, uses the above
lemmas.

3.9 THE LIMIT THEOREM

Now we prove the limit theorem which gives asymptotic behavior of the
non-extinction probability Q(t) = P{X(t) # 0|X(0) = &;} and the limit-
ing distribution of the process conditioned on non-extinction. For vectors

s = (81, 52) and x = (x1,x2) denote s* = s7's5°.

Theorem 3. If mp < 1,0% € (0,00), Gi(t) € Ry, i = 1,2 and (3.25) is
satisfied, then

a)
i W aith
=001 — G(t)  (1+c)(1—mp)

b)
lim E[sX®X(t) #0,X(0) = ¢;] = @i + DSy

t—00 ai + b

Remarks. 1. It follows from Theorem 3 that, if the process does not become
extinct, in the long run with probability one a single individual is alive. It
is the individual of the initial type with probability a;(a; + b;)~* and of the
opposite type with probability b;(a; + b;) ™. Recall that a; = d1; + daic, b; =
d1;cm + 09;p. In terminology of epidemics the results illustrate the following
situation. By preventive measures, such as isolating of infective individuals or
increasing of the immunization rate one can ensure that mp < 1, which leads
to extinction of the epidemic with probability one. However, if an epidemic
initiated by a single infective does not cease, then in the long run one infec-
tive may exist with probability (1 + cm)~'. With probability em(1 + cm)™!
an individual who had a contact with an infective may exist in the long run.

2. If in particular Go(0+) = 1 and p = 1 from Part (b) of Theorem 2 we

obtain the result for subcritical single-type process (Theorem 2 in Ref 2, p.

171).
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4. CONCLUSIONS AND RECOMMENDATIONS

In the project we achieved all the objectives. The following results were ob-
tained.

1. The age-dependent branching process which takes into account the incu-
bation period of the life of individuals is defined.

2. It is discovered that the process with incubation can be considered as a
two type Bellman-Harris process with a periodic mean matrix.

3. When the Malthusian parameter exists, it is demonstrated that the asymp-
totic properties of the process with incubation can be obtained from those
of multi-type Bellman-Harris processes.

4. Exact formulas for the expected extinction time and for the distribution
of the number of generations to extinction are obtained. Applications in de-
termining of the optimal vaccination rate in SIR epidemics are demonstrated.

5. In the project we obtained certain new properties of sub-exponential
distributions, in particular, a subclass, which is closed with respect to con-
volutions is described.

6. Using these new properties of sub-exponential distributions we derived
asymptotic behavior of the first and second moments and of the probability
of non-extinction, in the case when the Malthusian parameter does not exist.
A limit theorem for the process conditioned on non-extinction is also proved.

We recommend for a future research work the following:

1. Developing an estimation theory of parameters (such as the main repro-
duction number m and the vaccination rate ¢) of the process with incubation.

2. Adopting the model to more general (such as SIS, SIRS and Household )
epidemic models. Applying the results of the project in these models.

3. Generalization of the model in frameworks of more general age-dependent
and Crump-Mode-Jagers processes.
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5. ACTIVITIES RELATED TO THE PROJECT
1. Seminars:

a) ”Branching Processes with Incubation” ;| seminar in the Department of
Mathematical Sciences, KFUPM, December 04, 2006.

b) ”Closure of the Sub-Exponential class under the convolution” | seminar
in the Department of Mathematical Sciences, KFUPM, March 27, 2007.

¢) "Incubation and delay in a stochastic model of population dynamics”,
presentation in Applied Mathematics Day, April 17, 2007, KFUPM.

2. Conferences: The problems related to the project were discussed in the
following conference:

a) Rahimov, I. ” Age-dependent branching processes with incubation”, Work-
shop on Stochastic Modelling in Population Dynamics , 10-13 April 2007
Luminy- Marseille, France.

http : / Jwww.cirm.univ — mrs. fr/videos /2007 /resumes/10a,bs.pdf

6. LIST OF PUBLICATIONS

1. Rahimov, I. and Chanane, B. ”Branching processes with incubation”,

STOCHASTIC MODELS, (ISI journal, accepted).

2. Rahimov, I. "Two type branching processes with sub-exponential life-
spans and SIR epidemic models”, JOURNAL OF STOCHASTIC ANALY-
SIS AND APPLICATIONS, (ISI journal, accepted).

3. Rahimov, I. and Chanane, B. ”"Branching processes with incubation”,
Technical Report No 375, KFUPM, May, 2007.
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