
1 Abstract

In this research project a method for investigation of some functionals of
branching stochastic processes related their genealogy is developed. The
method is based on construction and study of a special form random sum
of independent vectors of indicator functions. Using results obtained for the
random sum, limit distributions for generalized reduced processes and for
the number of exceedances generated by productive ancestors in large popu-
lations have been found. This problem is considered for discrete time single
and multi-type processes in critical, subcritical and supercritical cases. Pos-
sibilities of applications of the method in more general models of branching
processes and in other kind of stochastic processes are studied.
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2 Introduction

We consider a sequence of random vectors which is defined as following. Let
{ξij(k, m), j ≥ 1}, i = 1, 2, ..., n, for any pair (k, m) ∈ N2

0 , N = {1, 2, ...}, N0 =
{0}⋃

N, be n independent sequences of random variables and {νik, k ∈
N0}, i = 1, 2, ..., n, be n sequences of (not necessarily independent) random
variables taking values 0, 1, ... and independent of family {ξij(k,m)}. We
consider the family of random vectors

W(k, m) = (W1(k, m), ..., Wn(k, m)),Wi(k, m) =
νik∑

j=1

ξij(k, m). (1)

Assume that ξij(k, m), j = 1, 2, ... for any fixed k, m and i are independent

and identically distributed Bernoulli random variables with parameter P
(i)
km

(i.e. have distribution b(1, P
(i)
km)).

We shall study the asymptotic behavior of W(k,m) as k,m →∞ under
some assumptions on random variables νik and ξij(k,m) in different cases of
relationship between parameters k and m.
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Random sums of independent random variables or random vectors have
been considered by many authors. First it is because of the interest in ex-
tending classic limit theorems of the probability theory to a more general
situation and to discover new properties of the random sums caused by ”ran-
domness” of the number of summands. On the other hand many problems in
different areas of probability can be connected with a sum of random num-
ber of random variables. Rather full list of publications on random sums can
be found in recent monograph by Gnedenko and Korolev (1996). Transfer
theorems for the random sum of independent random variables can also be
seen in Gnedenko(1997).

The relationship between random sums and branching stochastic processes
is well known. Starting from early studies (see Harris (1966), for example)
including the recent publications the fact that the number of particles in a
model of branching process can be represented as a random sum have been
mentioned. Some of investigations show that using this relationship in study
of branching models makes possible to investigate new variables related to
the genealogy of the process, to study more general modifications of branch-
ing processes and to consider different characteristics of the process from a
unique point of view. So, limit distributions for the number of pairs of indi-
viduals at time τ having the same number of descendants at time t, t > τ are
found in [7]. A more general variable of this kind, describing the number of
individual pairs having ”relatively close” number of descendants considered
in the paper [8] (see also [9], Ch IV). Using this relationship limit theorems
for different models of branching processes with immigration which may de-
pend on the reproduction processes of particles are also proved. This kind
problems are systematically studied in the mentioned above monograph [9].
Investigations of the maximum family size in a population by Arnold and Vil-
lasenor (1996), Rahimov and Yanev (1999) and by Yanev and Tsokos (2000)
are also based on this kind of a relationship.

In this project we consider the relationship of the random sum of ran-
dom vectors and multitype branching processes. Although X(t) the number
of individuals of different types at time t is the main object of investiga-
tion in the theory of multitype branching processes, there are many other
variables related to the population which are of interest as well. One ex-
ample of such a variable is the time to the closest common ancestor of the
entire population observed at certain time. For a single-type Galton-Watson
process this variable was considered by Zubkov (1975), who proved that, if the
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process is critical, the time is asymptotically uniformly distributed. Later,
it turned out that the time to the closest common ancestor may be treated
as a functional of so called reduced branching processes. This a process was
introduced by Fleischmann and Siegmund-Schultze(1977) as a process that
counts only individuals at a given time τ having descendants at time t, t > τ.
They demonstrated that in the critical single-type case the reduced process
can well be approximated by a non-homogeneous pure birth process. Later
a number of studies extended their results to general single and multitype
models of branching processes (see [14], [15] and [12], for example).

In the research project we discovered that, if one uses theorems proved
for the random sums defined in (1), one may study a generalized model of
multitype reduced processes. Let θ(t) = (θ1(t), ..., θn(t)) be a vector of non-
negative functions, τ and t, τ < t be two times of observation. We define
process X(τ, t) = (X1(τ, t), ..., Xn(τ, t)), where Xi(τ, t) is the number of type
Ti individuals at time τ , whose number of descendants at time t of at least
one type is greater than corresponding level, given by vector θ(t − τ). It is
clear that X(τ, t) counts only ”relatively productive” individuals at time τ .
We also note that X(τ, t) is usual n-type reduced process, if θ(t) = 0 for all
t ∈ N0. In the project limit distributions for process X(τ, t) as t, τ → ∞ in
different cases of relationship between observation times τ and t for critical
processes have been obtained. For single type processes limit theorems are
also proved in subcritical and supercritical cases. Asymptotic behavior of
expected number of individuals counted in generalized reduced process is
also studied. Possibilities of applications in more general models branching
processes and in other processes are investigated.
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3 Results and discussion

3.1 Convergence of the random sum

For n -dimensional vectors x = (x1, ..., xn),y = (y1, ..., yn) we denote x⊕y =
(x1y1, ..., xnyn),xy = (xy1

1 , ..., xyn
n ),x/y = (x1

y1
, ..., xn

yn
), (x,y) = x1y1 + ... +

xnyn,
√

x = (
√

x1, ...,
√

xn), and x ≥ y or x > y if xi ≥ yi or xi > yi

respectively.
First theorem obtained in the project concerning the vector (1) covers the

case when normalized vector νk = (νik, i = 1, ..., n) has a limit distribution.
Namely we assume that there exists a sequence of positive vectors Ak =
(Aik, i = 1, ..., n) such that Aik →∞, k →∞,

{ νk

Ak

|νk 6= 0} → Y = (Y1, ..., Yn) (2)

in distribution and for the vector P(k, m) = (P
(i)
km, i = 1, ..., n)

P(k,m)⊕Ak → a = (a1, ..., an), (3)

where the components of the vector a may be +∞.

Theorem 1. If conditions (2) and (3) are satisfied, then

{ W(k,m)

P(k, m)⊕Ak

|νk 6= 0} → W

in distribution and Ee(λ,W) = ϕ(λ∗), where ϕ(λ) is the Laplace transform of
the vector Y, λ∗ = (λ∗1, ..., λ

∗
n) and λ∗i = λi, if ai = ∞ and λ∗i = ai(1−e−λi/ai),

if ai < ∞.

The family of vectors (1) is eventually a sum of independent vectors, if
vectors νk = (νik, i = 1, ...n) have degenerate distributions. Therefore one
may expect to obtain a normal limit distribution under some natural as-
sumptions. The next theorem obtains the conditions under which the limit
of vector W(k, m) is a mixture of the normal and a given distribution. As-
sume
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C1. For a given sequence of positive vectors Ak there exists a sequence
lk = (lik, i = 1, ..., n), k ≥ 1 such that Aik/lik →∞, k →∞, i = 1, ..., n and

lk ⊕P(k, m)⊕ (1−P(k, m)) → C, i = 1, ..., n

as k, m →∞, where C = (Ci, i = 1, ..., n) is a positive vector of constants.

Theorem 2. If conditions (2) and C1 are satisfied, then




W(k, m)− νik ⊕P(k, m)√
Ak ⊕C/lk

|νk 6= 0



 → W

as k, m →∞ , where

P{W ≤ x} =
∫ ∞

0
...

∫ ∞

0

n∏

i=1

Φ(
xi√
yi

)dT (y1, ..., yn),

Φ(x) is the standard normal distribution and T (x1, ..., xn) is the distribution
of the vector Y in (2).

These results will be published in ”International Journal of Mathematics and
Mathematical Sciences IJMMS (USA).

3.2 Construction of the generalized reduced process

In this study we have given a rigorous definition of the generalized reduced
process X(τ, t). We use the following notation for individuals participating in
the process. Let the process starts with a single ancestor at time t = 0 of type
Ti, i = 1, ..., n. We denote it by Ti and consider as zeroth generation. The
direct offspring of the initial ancestor we denote as (Ti, Tj,mj), where Tj, j =
1, ..., n is the type of the direct descendant and mj ∈ N, N = {1, 2, ...} is the
label (the number) of the descendant in the set of all immediate descendants
of Ti. Thus mk+1th direct descendant of the type Tik+1

of the individual
α = (Ti, Ti1 , m1, ..., Tik ,mk) will be denoted as α′ = (α, Tik+1

,mk+1). Here
and later on for any two vectors α = (i1, ..., ik) and β = (j1, ..., jm) the ordered
pair (α, β) we will understand as k+m dimensional vector (i1, ..., ik, j1, ..., jm).

If we use the above notation, the set <t ∈ E, where E is the space of all
finite subsets of

∞⋃

k=1

Nk
1 , Nk

1 = Nk−1
1 ×N1, N1 = {Ti} × {T1, ..., Tn} ×N
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corresponds to the population of the tth generation. It is clear that <t can
be decomposed as <t = ∪n

i=1<(i)
t , where <(i)

t is the population of the type Ti

individuals of the tth generation. Consequently components of the process
X(t) are found as Xi(t) = card{<(i)

t }, t ∈ N0 and for any τ and t such that
τ < t we have

X(t) =
n∑

i=1

∑

α∈<(i)
τ

X(α)(t− τ),

where X(α)(t) = (X
(α)
1 (t), ..., X(α)

n (t)) is the n-type branching process gener-
ated by individual α.

Let =i([θ], τ, t) be the set of individuals in <(i)
τ having at least one type

of descendants at time t more than corresponding component of θ(t− τ). It
is not difficult to see that it can be described as following.

=i([θ], τ, t) = {α ∈ <(i)
τ : for at least one j ∃ more than θj(t− τ)

β -sets such that (α, β) ∈ <(j)
t },

where α ∈ N τ
1 , β ∈ N t−τ

1 . Thus the generalized reduced process is defined as
X(τ, t) = (Xi(τ, t), i = 1, ..., n) with Xi(τ, t) = card{=i([θ], τ, t)}.

In particular, if θ(t) = 0 for all t, then =i([0], τ, t) contains all individ-
uals of type Ti only living in τth generation and having descendants (at
least of one type) in generations τ + 1, τ + 2, ..., t. Consequently in this case
X(τ, t), 0 < τ < t, is the n-type usual reduced branching process.

3.3 Limit behavior of the reduced process

We denote by P i
α, α = (α1, ..., αn) ∈ Nn

0 , the offspring distribution of the
process X(t), i.e.

P i
α = P{X(1) = α|X(0) = δi}

is the probability that an individual of type Ti generates the total number α
of new individuals. Here δi = (δij, j = 1, ..., n), δij = 0 if i 6= j and δii = 1.
We also denote

F i(S) =
∑

α∈Nn
0

P i
αSα1

1 ...Sαn
n , F(S) = (F 1(S), ..., F n(S)),

Qi(t) = P{X(t) 6= 0|X(0) = δi},Q(t) = (Q1(t), ..., Qn(t)).
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Let for i, j, k = 1, 2, · · · , n

aj
i =

∂F j(S)

∂Si

|S=1 , bj
ik =

∂2F j(S)

∂Si∂Sk

|S=1 ,

A =
∣∣∣
∣∣∣aj

i

∣∣∣
∣∣∣ be the matrix of expectations, ρ be its Peron root and the right

and the left eigenvectors U = (u1, u2, ..., un) and V = (v1, v2, ..., vn) corre-
sponding to the Peron root be such that

AU = ρU, VA = ρV, (U,V) = 1, (U,1) = 1.

If A is indecomposable, aperiodic and ρ = 1, the process X(t) is called
critical indecomposable multitype branching process. We assume that the
generating function F(S) satisfies the following representation

x−
n∑

j=1

vj(1− F j(1−Ux)) = x1+αL(x), (4)

where 0 < x ≤ 1, α ∈ (0, 1], and L(x) is a slowly varying function as x ↓ 0.
Note that in this case ρ = 1 , i.e. the process is critical and the second
moments of the offspring distribution bj

ik, i, j, k = 1, ..., n, may not be finite.
Under this assumption the following limit theorem for the process X(t) holds
(see Vatutin (1977)).

Proposition 1. If the offspring generating function F(S) satisfies represen-
tation (20) then we have
a)

Qi(t) ∼ ujt
−1/αL1(t)

as t →∞, where L1(t) is a slowly varying as t →∞ function;
b)

lim
t→∞P {X(t)q(t) ≤ x⊕V | X(t) 6= 0,X(0) = δi} = π(x),

where q(t) =
∑n

j=1 vjQ
j(t) and π(x) = π(x1, x2, ..., xn) a distribution having

the Laplace transform

φ(λ) =
∫

Rn
+

e−(x,λ)dπ(x) = 1− (1 + λ̄−α)−1/α, λ̄ = (λ,1). (5)
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Now we are in a position to state our first result about X(τ, t). Let
θ = (θ1, ..., θn) ∈ Rn

+, R+ = [0,∞),C = (C1, ..., Cn) ∈ Rn
+ be some nonnega-

tive vectors.

Theorem 3. If condition (20) is satisfied, θ(t) = θ ⊕ V/q(t) and t, τ →
∞, t− τ →∞ such that Q(t− τ)/Q(τ) → C, then

P{X(τ, t) = k|X(τ) 6= 0,X(0) = δi} → P ∗
k ,

where k = (k1, ..., kn) ∈ Nn
0 and the probability distribution {P ∗

k ,k ∈ Nn
0 }

has the generating function φ∗(S) = φ(a) with a = bC⊕U⊕V⊕ (1−S), b =
1− π(θ),S = (S1, ..., Sn) and φ(λ) is the Laplace transform defined in (21).

Remark. It is clear that vector C in the condition Q(t − τ)/Q(τ) → C
necessarily has the form C = C1, where C ≥ 0 is some constant.

Example 1. Let F(S) satisfies condition (4) with α = 1. We shall note here
that in this case the second moments of the offspring distribution still may be
infinite. For this kind of a process the limit distribution π(θ) is exponential
and the generating function φ∗(S) has the form φ∗(S) = (1 + d)−1, where
d = bC

∑n
j=1 ujvj(1 − Sj), b = e−θ∗ , θ∗ = min{θ1, ..., θn}. We represent it as

following

φ∗(S) =
1

1 + Ce−θ∗

(
1− Ce−θ∗

1 + Ce−θ∗

n∑

i=1

uiviSi

)−1

. (6)

What is the distribution having the last probability generating function?
To answer this question we consider a sequence of independent random vari-
ables X1, X2, ... such that P{Xi = j} = pj, j = 0, 1, 2, ..., n,

∑n
j=0 pj = 1,

where p0 = (1 + Ce−θ∗)−1, pj = Ce−θ∗ujvj/(1 + Ce−θ∗), j = 1, 2, ..., n.
Let ∆1 be the number of 1′s, ∆2 be the number of 2′s and so on ∆n be
the number of n′s observed in the sequence X1, X2, .... before the first zero
is obtained. Then it follows from the formula for the generating function of
generalized multivariate geometric distribution in Ch. 36.9 of Johnson at.
all.(1997) that the vector (∆1, ..., ∆n) has the probability generating function
given by(22) i. e.

E
(
S∆1

1 S∆2
2 ...S∆n

n

)
= φ∗(S).
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Hence we have the following result.
Corollary 1. If assumptions of Theorem 3 are satisfied with α = 1, then the
probability distribution {P ∗

k ,k ∈ Nn
0 } is multivariate geometric distribution

defined by generating function (5) such that

P ∗
k = P{∆i = ki, i = 1, ..., n}.

It is clear that, if n = 1, the distribution is geometric, i. e. P ∗
k = pqk, k =

0, 1, ... with p = (1 + Ce−θ1)−1, q = Ce−θ1(1 + Ce−θ1)−1.

Example 2. Let assumptions of Theorem 3 be satisfied and τ = [εt], 0 <
ε < 1. Using asymptotic behavior of Q(t) and uniform convergence theorem
for the slowly varying functions we obtain that as t →∞

Q(t− τ)

Q(τ)
→

(
ε

1 + ε

)1/α

1.

Consequently in this case the limit distribution has the generating function
φ∗(S) with C = (ε/(1 + ε))1/α. In particular we have the following result.

Corollary 2. If assumptions of Theorem 3 are satisfied and τ = o(t), then

lim
t→∞P{X(τ, t) = k|X(τ) 6= 0,X(0) = δi} = 0

for all k ∈ Nn
0 and k 6= 0.

It is known that in the critical case the process X(t) goes to extinction
with probability 1. Corollary 2 shows that, if τ = o(t), even conditioned
process X(τ, t) given X(τ) 6= 0 vanishes with a probability approaching 1.

Theorem 3 gives a limit distribution for X(τ, t) when the times of obser-
vation τ →∞ and t →∞ such that Q(t−τ)/Q(τ) has a finite limit. Now we
consider the case when this limit is not finite. Let Ti(τ, t) = Qi(t− τ)/Qi(τ)
and T(τ, t) = (T1(τ, t), ..., Tn(τ, t)).

Theorem 4.If condition (4) holds, θ(t) = θ⊕V/q(t) and t, τ →∞, t− τ →
∞ such that Ti(τ, t) →∞, i = 1, 2, ..., n, then

P

{
X(τ, t)

T(τ, t)
≤ x|X(τ) 6= 0,X(0) = δi

}
→ π(

1

b
x),
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where π(x),x ∈ Rn
+, is the distribution from Proposition 2 and b = 1− π(θ).

Remark. It follows from the asymptotic behavior of Qi(t) that, if Ti(τ, t) →
∞ for at least one i, then it holds for each i = 1, 2, ..., n.

Example 3. If matrix A is indecomposable, aperiodic, ρ = 1 and bi
jk <

∞, i, j, k = 1, ..., n, then (4) is satisfied with α = 1, L(x) → const, x →
0. In this case Qi(t) ∼ 2ui/σ

2t, i = 1, ..., n as t → ∞, where σ2 =∑n
j,m,k=1 vjb

j
mkumuk. Consequently

q(t) =
n∑

j=1

Qj(t)vj ∼ 2

σ2t
, t →∞

and θ(t) ∼ σ2tθ⊕V/2. On the other hand b = e−θ∗ , θ∗ = min{θ1, ..., θn} and
Tj(τ, t) ∼ τ/(t − τ), j = 1, ..., n. Thus Tj(τ, t) → ∞, if, for example, τ ∼ t
and we obtain the following result from Theorem 4.

Corollary 3. If ρ = 1, 0 < σ2 < ∞ and t, τ → ∞, t − τ → ∞ such that
τ ∼ t, then

P
{

t− τ

τ
X(τ, t) ≤ x|X(τ) 6= 0,X(0) = δi

}
→ 1− exp{−x∗

b∗
},

where x ∈ Rn
+, x∗ = min{x1, ..., xn}, b∗ = exp{−min{θ1, ..., θn}}.

The above two theorems describe the asymptotic behavior of X(τ, t) when
t − τ → ∞. Now we consider the case τ = t − ∆, where ∆ ∈ (0,∞) is a
constant.

Theorem 5. If condition (4) is satisfied, t, τ →∞ such that t− τ = ∆ ∈
(0,∞) and θ(t) = θ = (θ1, ..., θn) ∈ Rn

+, then

P{X(τ, t)⊕Q(τ) ≤ x|X(τ) 6= 0,X(0) = δi} → π(
x

R(∆)
),

where x ∈ Rn
+ and

R(∆) = (R1(∆), ..., Rn(∆)), Ri(∆) = P{
n⋃

j=1

{Xj(∆) > θj}|X(0) = δi}.
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Proofs of Theorems 3-5 and construction of process X(τ, t) will be published
in IJMMS (USA).

Remark. It follows from Proposition 1 that

Qi(τ)

Qi(t)
∼

(
t

t−∆

)1/α L1(t−∆)

L1(t)

which shows that Qi(τ) ∼ Qi(t) as t, τ →∞, t− τ = ∆, for each i = 1, ..., n.
Therefore the vector of normalizing functions Q(τ) in Theorem 5 can be re-
placed by Q(t).

3.4 The number of productive ancestors

Now we consider a population containing at time t = 0 a random number
νi(t), i = 1, ..., n, t ∈ N0 individuals (ancestors) of n different types T1, ..., Tn.
Each of these individuals generates a discrete time indecomposable n type
branching stochastic process. Let θ(t) = (θ1(t), ..., θn(t)) be a vector of non-
negative functions. In how many processes generated by these ancestors the
number of descendants at time t of at least one type will exceed the corre-
sponding level given by θ(t)? To answer the question we investigate process
Y(t) = Y([θ], t) = (Y1(t), ..., Yn(t)), where Yi(t) is the number of initial indi-
viduals of type Ti whose number of descendants at time t of at least one type
is greater than corresponding component of the vector θ(t). It is clear that
Y(t) takes into account only ”relatively productive” ancestors regulated by
family of levels θ(t), t ∈ N0.

Process Y(t) may be associated with the following scheme describing
growth of n-type trees in a forest. Suppose at time zero we have νi(t), i =
1, ..., n, one branch trees of types Ti. Each of these trees will grow and give
new branches of types T1, ..., Tn according to independent, indecomposable n
type branching processes. Then process Y(t) = (Y1(t), ..., Yn(t)) will count
the number of ”big trees”: Yi(t) is the number of big trees of type Ti having
more than θj(t) new branches at time t for at least one j, j = 1, ..., n.

It is not difficult to see that the components of the process Yi(t) can be
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presented as

Yi(t) =
νi(t)∑

j=1

ξij(t), (7)

where ξij(t) = χ(
⋃n

l=1{Xj
il(t) > θl(t)}) and Xj

il(t) is, as before, the number
of individuals of type Tl at time t in the process initiated by jth ancestor of
type Ti. Consequently theorems proved for random sum (1) may be applied
to this process.

Let all assumptions from Part 3.3 on n− type branching process X(t), t ∈
N0 be satisfied and the generating function corresponding to probability dis-
tribution P i

α, α ∈ Nn
0 satisfies equation (4).

Theorem 6. Let condition (4) be satisfied and θ(t) = θ ⊕V/q(t), θ ∈ Rn
+.

If condition (2) is satisfied and for the normalizing coefficients in (2)

AitQ
i(t) →∞ (8)

as t →∞ for i = 1, ..., n, then

P{Yi(t)− νitai(t)√
νitai(t)

≤ xi, i = 1, ..., n|ν 6= 0} → L(x),

where x ∈ Rn, ai(t) = bQi(t), b = 1− π(θ), θ ∈ Rn
+ and L(x) defined in The-

orem 2.

3.5 Noncritical processes

We now assume that the initial branching process X(t) is single type, i.
e. there are individuals of one type. Let the offspring distribution of a single
individual be pk = P (X(1) = k | X(0) = 1) and

f(s) = E[sX(1) | X(0) = 1], ft+1(s) = f(ft(s)), f1(s) = f(s), A = f ′(1).

It is not difficult to see from definition of the process X(τ, t) that it can
be written as following

X(τ, t) =
X(τ)∑

j=1

χ{X(τ)
j (t− τ) > θ(t− τ)}, (9)
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where χ(A) is the indicator of the event A and X
(τ)
j (t) is the process generated

by j-th individual existing at time τ . Hence we can apply theorems on the
random sum W

(n)
k to process X(τ, t) with ντ = X(τ) and

ξ
(t)
jτ = χ{X(τ)

j (t− τ) > θ(t− τ)}.
The generating function f(s) is strictly increasing, so it has inverse g(s). Let
gt(s), t ∈ N be tth functional iteration of g(s). Then for q < s < 1 we put
kt(s) = − ln gt(s). It is well known that when A > 1 the following limit
theorem holds for X(t) (see Jagers (1975), page 31-34, for example).

Theorem A. Let X(t) be a supercritical process i. e. A > 1.
a)There exists a sequence {kt} positive numbers, which can be chosen as
kt = kt(s), q < s < 1, that ktX(t) converges almost surely as t → ∞ to a
non-degenerate, finite and non-negative random variable W (s).
b) If EX(1) ln X(1) < ∞, then kt can be chosen as kt = A−t.
c) The Laplace transform of the limit random variable B(λ) = Ee−λW (s), λ ≥
0 satisfies equation B(Aλ) = f(B(λ)).

In the project, using limit theorems for Wn, we obtained the following
results for supercritical single type processes.

Theorem 7. Let A > 1, θ(t) = θ/kt, θ ∈ (0,∞), kτ → 0. If t, τ → ∞, such
that t− τ →∞, then

P{X(τ, t)kτ ≤ x | X(τ) > 0} → π(
x

P (W > θ)
),

where distribution π(x) has the Laplace transform (B(λ) − q)/(1 − q) and
B(λ) satisfies the equation B(Aλ) = f(B(λ)).

Now we consider the case when t, τ →∞ but t− τ ≡ constant.

Theorem 8. Let A > 1, θ(t) ≡ θ ∈ (0,∞). If t, τ → ∞, such that t − τ =
t0 ∈ (0,∞), then

P{X(τ, t)kτ ≤ x | X(τ) > 0} → π(
x

R(θ, t0)
),

where R(θ, t0) = P (X(t0) > θ).
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Example 1. Let the offspring distribution be positive geometric, i.e. pk =
p(1 − p)k−1, k ≥ 1, 0 < p < 1 and p0 = 0. It is clear that in this case the
process is supercritical with

f(s) =
sp

1− s(1− p)
, A = p−1 > 1.

The equation for the Laplace transform in Theorem A will have the form

B(Aλ) =
pB(λ)

1− (1− p)B(λ)
.

It is not difficult to see that function B(λ) = p/(p + λ) satisfies the above
equation. On the other hand q = 0, kτ = A−τ and the distribution π(x) is
exponential of the parameter p. Thus we have from Theorem 3 the following
result in this case.

Corollary 1. If the offspring distribution is positive geometric with para-
meter p, 0 < p < 1, θ(t) = θp−τ , θ ∈ (0,∞), then

P{X(τ, t)pτ ≤ x | X(t) > 0} → 1− exp{−peθpx}, x ≥ 0.

Now we consider the subcritical case. In this case we use the following
result which is known as Yaglom’s theorem (see Jagers(1975), p. 29, for ex-
ample).

Theorem B. If A < 1, then there exists

lim
t→∞P (X(t) = k | X(t) > 0) = P ∗

k , k ∈ N

the probability generating function F ∗(s) of {P ∗
k , k ∈ N} satisfies functional

equation
1− F ∗(f(s)) = A(1− F ∗(s)). (10)

In this case limit theorems for random sums give the following result.
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Theorem 9. Let A < 1 and θ(t) ≡ θ ∈ [0,∞).
a) If t, τ →∞ such that t− τ →∞, then

P{X(τ, t) = k | X(τ) > 0} → 0

for each k ≥ 1.
b) If t, τ →∞ such that t− τ = t0 ∈ (0,∞), then

P{X(τ, t) = k | X(τ) > 0} → q∗k, k ∈ N0

and {q∗k, k ∈ N0} has the probability generating function F ∗(1−R(θ, t0)(1−
s)).

Results on noncritical processes are published in International Mathematical
Journal (Japan), V.3, No 8, 2003.

3.6 Behavior of expected number of particles

Let X(τ, t) be a single type generalized reduced process. Using iden-
tity (9) we obtained the following exact formula for the expected number of
particles.

EX(τ, t) = EX(τ)P{X(t− τ) > θ(t− τ)} (11)

The assumption (4) will heave the following form in this case

f(s) = s + (1− s)1+αL(1− s), (12)

In the project the following results are obtained.

Proposition 1. If (12) is satisfied, θ(t) = θ/Q(t), θ ∈ [0,∞), and t, τ →
∞, t− τ →∞ such that Q(t− τ)/Q(τ) → C ∈ [0,∞), then

EX(τ, t) ∼ (1− π(θ))C
N(τ)

τ 1/α

where N(t) is a slowly varying function such that Nα(t)L(N(t)/t1/α) → α−1.

Next proposition gives asymptotic behavior of the expectation in the case of
supercritical processes.
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Proposition 2. Let A > 1, θ(t) = θ/kt, θ ∈ [0,∞), where kt is the same
sequence of normalizing constants from Theorem A.

a) If t, τ →∞, t− τ →∞, then

EX(τ, t) ∼ AτP{W > θ}.

b) If t, τ →∞, t− τ = ∆ ∈ (0,∞), then

EX(τ, t) ∼ AτR(∆, θ).

Asymptotic formulas for the expectation in subcritical case also obtained.

4 Applications

4.1 More general models of branching processes

So far we considered the subpopulation of productive individuals in a single or
n-type Galton-Watson processes. It turned out that the methods developed
in this project, could be used in study of more general models of branching
processes. It can be seen from proofs of main theorems that assumptions
about the initial branching process lead us to use known results about as-
ymptotic behavior of the ”non-extinction” probability and limit theorems for
the initial process. For branching models , such as continuous time Markov
branching processes, Bellman-Harris processes, the Sevastyanov model and
Crump-Mode-Jagers processes this kind results are well known. So to study
the generalized reduced processes for these models one needs slightly modify
theorems 1 and 2 and use known limit theorems for one or another model
of branching processes. Thus we can conclude that our approach developed
here allows to consider different models of branching processes from a unique
point of view.

4.2 Other stochastic processes

The theorems obtained for random sums of indicators may also be used in
other stochastic processes, when one needs to count the number of some
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events related to the process in a time interval. Let us consider a single
server queue system in which the arrival and service times are independent
and the queue discipline is first come first served. Let X(t) be the number of
customers in the queue at time t, ξit, i = 1, 2, ... be the service times of these
X(t) customers. Then

ν(t) =
X(t)∑

i=1

χ(ξit > θ(t))

is the number of customers which need a ”long time” service, θ(t) is the
minimum time required to serve each of those customers. It is clear that
results obtained in the project for random sums of indicators allow to study
the process ν(t). It can be done in the cases of stationary and non stationary
service times.

5 Conclusions and Recommendations

In the project we achieved the results we were planning to obtain.
1. A special form sum of independent indicators have been constructed and
limit distributions are obtained.
2. A generalized reduced branching model is constructed. Limit theorems for
this process are obtaned in the critical multitype case and in the supercritical
and subcritical cases for a single type process.
3. Asymptotic behavior of the expected number of particles in the reduced
process have been obtained.
4. Applications of the results of Part 1 in different models of branching
processes as well as in other processes are studied.
We recommend for future research work the following:
1. Extending the results of the project to more general models of branching
processes, such as continuous time Markov branching processes, Bellman-
Harris processes, the Sevastyanov model and Crump-Mode-Jagers processes.
2. In the multitype case consider reduced processes with different sets of
types effecting productivity of the ancestor. Investigate possibilities of using
results of the project in those processes.
3. Study noncritical and decomposable multitype branching processes.
4. Obtain limit distributions for the number of ”long service time” customers
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in a single server queue system using random sum theorems.
5. Considering subpopulation of ”unproductive” individuals in the branching
populations is another direction for investigation.

6 Activities related to the project

1. Seminars: Two seminars in the department of Mathematical sciences:
one in the beginning of the project and another one by the end.
2.Conferences: The results of the project will be presented in the following
conferences.
a) International Conference on Dynamical systems and applications, Antalya,
Turkey, July 5-10, 2004.
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