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Abstract

We consider a critical discrete time branching process with generation de-
pendent immigration. In the case when the mean number of immigrating
individuals tends to infinity with the generation number we prove functional
limit theorems for centered and normalized process. The limiting processes
are deterministically time-changed Wiener with three different covariance
functions depending on the behavior of the mean and variance of the num-
ber of immigrants. As an application we prove that the conditional least
squares estimator of offspring mean is asymptotically normal, which demon-
strates an alternative case of normality of the estimator for the process with

non-degenerate offspring distribution. The norming factor is n
√

α(n) with

α(n) being the mean number of immigrating individuals to nth generation.
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1 Introduction

We consider a discrete time branching stochastic process Z(n), n ≥ 0, Z(0) =
0. It can be defined by two families of independent, nonnegative integer
valued random variables {Xni, n, i ≥ 1} and {ξk, k ≥ 1} recursively as

Z(n) =
Z(n−1)∑

i=1

Xni + ξn, n ≥ 1. (1)

Assume that Xni have a common distribution for all n and i, families {Xni}
and {ξn} are independent. Variables Xki will be interpreted as the number
of offspring of the ith individual in the (k − 1)th generation and ξk is the
number of immigrating individuals to the kth generation. Then Z(n) can be
considered as the size of nth generation of the population.

In this interpretation A = EXni is the mean number of offspring of a
single individual. Process Z(n) is called subcritical, critical or supercritical
depending on A < 1, A = 1 or A > 1 respectively. The independence assump-
tion of families {Xni} and {ξn} means that reproduction and immigration
processes are independent. However, in contrast of classical models, we do
not assume that ξn, n ≥ 1 are identically distributed, i. e. immigration rate
may depend on the time of immigration.

Investigations show that asymptotic behavior of the process with immi-
gration is very sensitive to any changes of the immigration process in time.
For instance, in critical case change of the mean number of immigrating in-
dividuals in time leads to such fluctuations of the process, that one needs to
use various functional normalization of the process to obtain non degenerate
limit distribution for the process (see [17], Ch. III and references therein).
Therefore description of processes which can be used as approximating in this
situation is of interest. On the other hand this kind of functional limit theo-
rems are useful in estimating parameters and in study of various functionals
of the process.

In this article we prove functional limit theorems for critical processes in
the case, when the immigration mean tends to infinity. It turns out that
suitably normalized process may be approximated by a Gaussian process
with independent increments and with three different covariance functions
depending on behavior of the mean and variance of the number of immigrants.
The limiting Gaussian process can be obtained from the Wiener process by
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a deterministic time-change. As an example of application of functional
limit theorems we prove that conditional least squares estimator (CLSE)
of offspring mean A is asymptotically normal. It is interesting to note that
norming factor depends on the mean number of immigrants and can be chosen
depending on the rate of immigration.

First approximation theorems of branching stochastic processes have ap-
peared due to W. Feller [6], who demonstrated that branching stochastic
process without immigration can be approximated by a diffusion process.
Lamperti [12], [13] proved convergence of finite dimensional distributions of
the process with large number of initial individuals to those of some diffusion
processes with two different normalization. These results were extended to
the functional form by T. Lindvall [14], [15]. Convergence of finite dimen-
sional distributions of a sequence of Galton-Watson branching processes with
stationary immigration has been investigated by Kawazu and Watanabe [11]
and Aliev [1]. Wey and Winnicki [19] have shown that random step functions
of a critical branching process with immigration converges in Skorohod met-
ric to a nonnegative diffusion process. Fluctuation theorems for the sequence
of nearly critical branching processes have been proved by Sriram [18], who
obtained a diffusion approximation. In papers by Ispàny, Pap and Van Zui-
jlen [7], [8] the authors demonstrated that Sriram’s result is also valid when
offspring variance tends to zero and centralized process can be approximated
by Ornstein-Uhlenbeck type processes. In addition, asymptotic normality of
the mean-square estimator of the offspring mean was proved with normalizing
factor n3/2. Note that in the latter case reproduction process will approach
to deterministic multiplication of individuals. The paper [9] of the same au-
thors is also devoted to the critical branching process with varying offspring
and immigration distributions. However, in contrast to our situation, in that
paper the offspring variance tends to zero.

It was known that in critical or nearly critical case the CLSE of the
offspring mean is not asymptotically normal (see [18] and [19]). Results
of [7] and [8] have shown that, when the process is nearly critical and the
offspring variance tends to zero, it has a normal limiting distribution. Our
Theorem 4 demonstrates an alternative situation of asymptotic normality of
CLSE for the process with non-degenerate offspring distribution.

It is known that (see Alzaid, Al-Osh [2], Dion, at all [5] and Franke,
Seligmann [4]) in the case of Bernoulli offspring distribution process defined in
equation (1) can be considered as an integer-valued, first order autoregressive
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(INAR(1)) time series model with noise ξk. In this framework considered here
process Z(n) can be related to INAR(1) model with non stationary (rising)
noise.

In proofs we follow the same scheme as in papers [7] and [8] and use some
tricks of the proof of appropriate statements there. Namely we represent our
process in the form of normalized martingale differences and use martingale
limit theorems to derive our results.

Main results and examples will be provided in Section 2 of the paper. In
Section 3 we prove several preliminary results which will be used in proofs of
main theorems. Section 4 is devoted to proofs of main results of the paper.

2 Main results and examples

From now on we assume that A = EXni and B = varXni are finite. We
also assume that α(n) = Eξn < ∞, β(n) = varξn < ∞ for each n ≥ 1 and
regularly varying when n →∞ functions, i. e. have the following form

α(n) = nαLα(n), β(n) = nβLβ(n), (2)

where α, β ≥ 0, Lα(n) and Lβ(n) are slowly varying as n → ∞ functions.
Then A(n) = EZ(n) and B2(n) = varZ(n) are finite for each n ≥ 1 and,
when A = 1,

A(n) =
n∑

k=1

α(k), B2(n) = ∆2(n) + σ2(n), (3)

where

∆2(n) = B
n∑

k=1

α(k)(n− k), σ2(n) =
n∑

k=1

β(k).

For each t ∈ R+ = [0,∞) we define sequence of step functions

Yn(t) =
Z([nt])− A([nt])

B(n)
.

Everywhere from now D, d and P denote convergence of random functions
in Skorohkod topology and convergence of random variables in distribution
and in probability respectively.
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Theorem 1. If A = 1, B ∈ (0,∞), α(n) → ∞ and β(n) = o(nα(n)), then

Yn(t)
D→ W (t2+α) as n → ∞ weakly in Skorokhod space D(R+, R), where

(W (t), t ∈ R+) is standard Brownian motion.

Note that in Theorem 1 we do not require a Lindeberg type condition on
offspring or immigration distribution. In fact, in this case it is satisfied for
the immigration process due to normalization by B2(n). However in opposite
case we need one on the sequence {ξn, n ≥ 1} which seems natural for the
process with inhomogeneous immigration. Thus we denote for each ε > 0

δn(ε) =
1

σ2(n)

n∑

k=1

E[(ξk − α(k))2; |ξk − α(k)| > εσ(n)]. (4)

Theorem 2. If A = 1, B ∈ (0,∞), α(n) → ∞, α(n) = o(n−1β(n)) and

δn(ε) → 0 as n → ∞ for each ε > 0 , then Yn(t)
D→ W (t1+β) as n → ∞

weakly in Skorokhod space D(R+, R).

Next theorem is related to the case when nα(n) and β(n) have the same rate.

Theorem 3. If A = 1, B ∈ (0,∞), α(n) →∞, β(n) ∼ cnα(n), c ∈ (0,∞)

and δn(ε) → 0 as n →∞ for each ε > 0 , then Yn(t)
D→ W (t1+β) = W (t2+α)

as n →∞ weakly in Skorokhod space D(R+, R).

Remarks. 1. Using Lemma 1 in Section 3, one can see that condition β(n) =
o(nα(n)) is equivalent to σ2(n) = o(∆2(n)), condition α(n) = o(n−1β(n)) is
equivalent to ∆2(n) = o(σ2(n)) and β(n) ∼ cnα(n) as n →∞, if and only if
σ2(n) ∼ θB2(n) with θ = d/(d + (1 + β)B), where d = c(1 + α)(2 + α).

2. Since β(n)/nα(n) is regularly varying with exponent β− 1−α and, when
β(n) ∼ cnα(n), as n → ∞ has a positive finite limit, we conclude that
β = α + 1. This explains equality W (t1+β) = W (t2+α) in Theorem 3.

Now we consider examples of the immigration process which satisfy condi-
tions of provided theorems.

Example 1. Let ξk, k ≥ 1 be Poisson with mean λ(k) → ∞, k → ∞ and
regularly varies with exponent α. Then ∆2(n) = B

∑n
k=1 λ(k)(n−k), σ2(n) =
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∑n
k=1 λ(k) and clearly σ2(n) = o(∆2(n)). In this case we obtain the following

result from Theorem 1.

Corollary 1. If A = 1, B ∈ (0,∞) and ξk, k ≥ 1 are Poisson with mean
λ(k) →∞, k →∞ and (λ(k))∞k=1 is regularly varying with exponent α, then

Yn(t)
D→ W (t2+α) as n →∞ weakly in Skorokhod space D(R+, R).

Example 2. Let now ξk, k ≥ 1 have positive geometric distributions with
parameter pk = k−1 i. e. P{ξk = i} = qi−1

k pk, i = 1, 2, ..., qk = 1− pk. In this
case α(k) = k, β(k) = qkp

−2
k = k2(1 − k−1). Consequently we have ∆2(n) ∼

Bn3/6 and σ2(n) ∼ n3/3. Therefore σ2(n) ∼ 2B2(n)/(B + 2). Now we show
fulfilment of the Lindeberg condition. Since ESξk = (pkS)(1−qkS)−1, we find
that (ESξk)

′′′
= 6pkq

2
k(1 − qkS)−4. Therefore Eξk(ξk − 1)(ξk − 2) = 6q2

kp
−3
k .

From this we conclude that E|ξk − α(k)|3 = O(k3), k → ∞ which leads to
relation

C3
n =:

n∑

k=1

E|ξk − α(k)|3 = O(n4), n →∞.

Thus C3
n/σ3(n) = O(n−1/2), n →∞, i. e. Lyapunov condition is satisfied for

ξk, k ≥ 1. Now we obtain the following result from Theorem 3.

Corollary 2. If A = 1, B ∈ (0,∞) and ξk, k ≥ 1, are geometric with para-

meter pk = k−1, then Yn(t)
D→ W (t3) as n → ∞ weakly in Skorokhod space

D(R+, R).

Example 3. Let ξk, k ≥ 1 be such that p = P{ξk = k2} = 1−P{ξk = 0}, q =
1− p. Then simple calculations give that ∆2(n) ∼ Bpn4/12, σ2(n) ∼ pqn5/5
as n → ∞ and consequently ∆2(n) = o(σ2(n). Since in this case C3

n ∼
pq(p2 + q2)n7/7 and σ3(n) ∼ (pq/5)3/2n15/2 the Lyapunov condition is again
satisfied. Thus we obtain from Theorem 2 that Yn(t) converges as n →∞ to
W (t5) weakly in Skorokhod space D(R+, R).

Now we consider one non trivial application of our theorems related to
conditional least-squares estimator of offspring mean. Let =(n) for each
n ≥ 0 be σ-algebra generated by {Z(k), k = 0, 1, ..., n}. We obtain from (1)
that

E[Z(n)|=(n− 1)] = AZ(n− 1) + α(n), n ≥ 1. (5)

6



If we assume that the immigration mean α(n) is known, then CLSE Ân

of A must minimize sum of squares error

n∑

k=1

(Z(k)− AZ(k − 1)− α(k))2.

By usual arguments we obtain that it has the form

Ân =

∑n
k=1(Z(k)− α(k))Z(k − 1)∑n

k=1 Z2(k − 1)
. (6)

Using Theorem 1 we shall prove the following result for Ân.

Theorem 4. If conditions of Theorem 1 are fulfilled, then

n
√

α(n)(Ân − 1)
d→ N(0, a), (7)

where N(0, a) is normal random variable with mean 0 and variance

a2 =
(1 + α)(2α + 3)2B

3α + 4
. (8)

We note that, if α = 0, i.e. the immigration mean tends to infinity as
a slowly varying function, then the variance of the limiting distribution is
9B/4.

It will be seen further in the paper that one can treat the CLSE in the
case when conditions of theorems 2 or 3 are satisfied. Note that in this case
Ân may not necessarily be asymptotically normal.

3 Preliminary results

We start with two simple lemmas on regularly varying functions. If a se-
quence (Cn)∞n=1 or function f is regularly varying with exponent ρ, we write
(Cn)∞n=1 ∈ Rρ and f ∈ Rρ. The following result is a discrete form of well
known Karamata’s theorem on regularly varying functions (see [3], Theorem
1.5.11).
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Lemma 1. If (Cn)∞n=1 ∈ Rρ, then for any θ ∈ (−ρ− 1,∞)

n∑

k=1

kθCk ∼ nθ+1Cn

θ + ρ + 1
(9)

as n →∞ and (
∑n

k=1 kθCk)
∞
n=1 ∈ Rθ+ρ+1.

Proof. We consider the function fc : [0,∞) 7→ R defined as fc(x) := C[x]

for each x ∈ [0,∞). Here [x] denotes the integer part of x. Due to Theorem
1.9.5 in [3] fc ∈ Rρ and locally bounded on [0,∞). Applying Theorem 1.5.11
in [3], we have ∫ x

0
tθfc(t)dt ∼ xθ+1fc(x)

θ + ρ + 1

as x →∞, which implies that function x 7→ ∫ x
0 tθfc(t)dt is regularly varying

with exponent θ + ρ + 1. Since Cn−1/Cn →∞, we obtain the statements of
Lemma 1.

Lemma 2. If A(n) is a regularly varying function with exponent α ≥ 0, then

sup
ε≤t≤a

|A(nt)

A(n)
− tα| → 0 (10)

as n →∞ for any 0 < ε ≤ a < ∞.

The assertion of this lemma is a simple consequence of the uniform conver-
gence theorem for slowly varying functions.

Lemma 3. If α(n) → ∞ as n → ∞ and regularly varies with exponent α
and A(n) = α(1) + ... + α(n), then as n →∞
a)

∆2(n) ∼ Bα(n)n2

(α + 1)(α + 2)
, σ2(n) ∼ nβ(n)

β + 1
. (11)

b) For each γ ≥ 0
n∑

k=1

Aγ(k) ∼ n

γα + γ + 1
Aγ(n). (12)
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Proof. To prove Part (a) consider

n∑

k=1

α(k)(n− k) = nA(n)−
n∑

k=1

kα(k).

If we apply Lemma 1 with θ = 0 and θ = 1, we obtain

A(n) ∼ nα(n)

α + 1
,

n∑

k=1

kα(k) ∼ n2α(n)

α + 2
(13)

as n → ∞, which implies the first relation in (11). The second relation in
(11) is a direct consequence of Lemma 1.

To prove Part (b) we take into account that (A(n))∞n=1 ∈ Rα+1 and
((A(n))γ)∞n=1 ∈ R(α+1)γ for any γ ∈ [0,∞). Therefore, applying again Lemma
1 with θ = 0, we obtain

n∑

k=1

(A(k))γ ∼ n

(α + 1)γ + 1
(A(n))γ (14)

as n →∞. Lemma 3 is proved.

Lemma 4. If α(n) →∞ as n →∞, then for each t ∈ R+ = [0,∞)
a)

B−4(n)var




[nt]∑

k=1

Z(k)


 → 0; (15)

b)

B−4(n)
[nt]∑

k=1

EZ2(k) → 0. (16)

Proof. To prove Part (a) we consider

var




[nt]∑

k=1

Z(k)


 = I1 + I2,

where

I1 =
[nt]∑

k=1

B2(k), I2 = 2
[nt]−1∑

i=1

[nt]∑

j=i+1

cov(Z(i), Z(j)).
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It is easy to see that

B−4(n)I1 ≤ B2([nt])[nt]

B4(n)
.

Due to Lemma 1 B2(n) is regularly varying and

B2(n) ∼ Bα(n)n2

(α + 1)(α + 2)
+

nβ(n)

β + 1
(17)

as n →∞ and we obtain that I1/B
4(n) → 0 as n →∞. Since

cov(Z(t), Z(t + n)) = AnvarZ(t),

recalling that B2(n) = varZ(n), we have

I2 =
[nt]−1∑

k=1

([nt]− i)B2(i) ≤ B2([nt])([nt]− 1)2.

Again taking into account (17) and that α(n) → ∞, we conclude that
I2/B

−4(n) → 0 as n →∞.
To prove Part (b) we observe that

[nt]∑

k=1

EZ2(k) =
[nt]∑

k=1

varZ(k) +
[nt]∑

k=1

A2(k). (18)

As it was just proved the first sum is o(B4(n)) as n → ∞. It follows from
Lemma 1 and Part (b) of Lemma 3 that

n∑

k=1

A2(k) ∼ n

2α + 3
A2(n), A(n) ∼ nα(n)

α + 1
(19)

as n →∞. From (17) and (19) we obtain that the second sum in (18) is also
o(B4(n)) as n →∞. Lemma 4 is proved.

Lemma 5. Let Xki be random variables from (1), X̄ki = Xki − 1 and

T (k) =
∑Z(k−1)

i=1 X̄ki. Then
a)

E[(T (k))2|=(k − 1)] = BZ(k − 1), (20)
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b)

E[(Σ′X̄kiX̄kj)
2|=(k − 1)] = 2B2Z(k − 1)(Z(k − 1)− 1), (21)

where
∑′ means summation for i, j = 1, 2, ..., Z(k − 1) such that i 6= j.

Proof. The relations (20) and (21) are direct consequence of independence of
random variables X̄ki, X̄kj, i 6= j and of a simple property of the conditional
expectation.

The following technical result is vital in proofs of main theorems.

Lemma 6. For any θ > 0

E[(T (k))2χ(|T (k)| > θ)|=(k − 1)] ≤ I1 + I2, (22)

where

I1 = Z(k−1)E[X̄2
11χ(|X̄11| > θ/2)], I2 =

4B2

θ2
(Z(k−1))2+

21/2B3/2

θ
(Z(k−1))3/2.

Proof. If we use simple inequality

χ(|ξ + η| > ε) ≤ χ(|ξ| > ε/2) + χ(|η| > ε/2), (23)

the left side of (22) can be estimated by R1 + R2 + R3, with

R1 = E[
Z(k−1)∑

i=1

X̄2
kiχ(|X̄ki| > θ/2)|=(k − 1)] = Z(k − 1)E[X̄2

11χ(|X̄11| > θ/2)],

R2 = E[
Z(k−1)∑

i=1

X̄2
kiχ(|τki| > θ/2)|=(k − 1)],

R3 = E[Σ′X̄kiX̄kjχ(|T (k)| > θ)|=(k − 1)],

where Σ′ is the same as in Lemma 5 and τki = T (k) − X̄ki. To estimate R2

we use independence of X̄ki and τki, Chebishev inequality, relation (20), and
obtain

R2 ≤ 4B

θ2

Z(k−1)∑

i=1

E[τ 2
ki|=(k − 1)] =

4B2

θ2
Z(k − 1)(Z(k − 1)− 1)
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Using Cauchy-Schwarz and Chebishev inequalities and relations (20) and
(21) we see that R3 is dominated by

1

θ
(E[(Σ′X̄kiX̄kj)

2|=(k−1)]E[(T (k))2|=(k−1)])1/2 =
21/2B3/2Z(k − 1)

θ

√
Z(k − 1)− 1

Lemma is proved.

4 Proofs of theorems

We represent our process Yn(t) in the form of a sum of normalized martingale
differences and deduce our results from a martingale limit theorem. Let
M(k) = Z(k)− E[Z(k)|=(k − 1)]. Then it follows from (1) and (5) that

Z(k)− E[Z(k)] = Z(k − 1)− E[Z(k − 1)] + M(k).

Consequent application of this identity leads to relation

Yn(t) =
[nt]∑

k=1

M(k)

B(n)
. (24)

Proof of Theorem 1. We use the following version of martingale central
limit theorem from [10] (see [10], Theorem VIII, 3.33).

Theorem A. Let {Un
k , k ≥ 1} for each n ≥ 1 be a sequence of martin-

gale differences with respect to some filtration {=n
k , k ≥ 1}, such that the

conditional Lindeberg condition

[nt]∑

k=1

E[(Un
k )2χ(|Un

k | > ε)|=n
k−1]

P→ 0 (25)

holds as n →∞ for all ε > 0 and t ∈ R+. Then

[nt]∑

k=1

Un
k

D→ U(t) (26)

as n → ∞ weakly, where U(t) is a continuous Gaussian martingale with
mean zero and covariance function C(t), t ∈ R+, if and only if

[nt]∑

k=1

E[(Un
k )2|=n

k−1]
P→ C(t) (27)
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as n →∞ for each t ∈ R+.
First we prove fulfilment of condition (27) for the sum in (24) with Un

k =
M(k)/B(n) and =n

k = =(k) for all n ≥ 1. Since

M(k) =
Z(k−1)∑

i=1

(Xki − 1) + ξk − α(k), (28)

we easily obtain that

[nt]∑

k=1

E[(Un
k )2|=n

k−1] =
σ2([nt])

B2(n)
+

B

B2(n)

[nt]∑

k=1

Z(k − 1). (29)

It follows from Lemma 4 that the variance of the second sum in (29) tends
to zero as n →∞. Therefore we just consider

B

B2(n)

[nt]∑

k=1

EZ(k − 1) =
B

B2(n)

[nt]∑

k=1

A(k − 1).

Since B2(n) ∼ ∆2(n) as n → ∞ under conditions of Theorem 1, appealing
to Lemma 3 we see that the last sum converges in probability to t2+α as
n →∞. Hence condition (27) is satisfied with C(t) = t2+α.

In our case the Lindeberg condition will be satisfied, if for each ε > 0 as
n →∞

I(n) =
1

B2(n)

[nt]∑

k=1

E[(M(k))2χ(|M(k)| > εB(n))|=(k − 1)]
P→ 0. (30)

Taking into account (28) and independence of the immigration and repro-
duction processes we have

I(n) = I1(n) + I2(n), (31)

where

I1(n) =
1

B2(n)

[nt]∑

k=1

E[(T (k))2χ(|M(k)| > εB(n))|=(k − 1)]

I2(n) =
1

B2(n)

[nt]∑

k=1

E[(ξk − α(k))2χ(|M(k)| > εB(n))|=(k − 1)].
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and T (k) is defined in Lemma 5.
Consider I1(n). Using inequality (23) we see that it can be estimated by

sum I11(n) + I12(n), where

I11(n) =
1

B2(n)

[nt]∑

k=1

E[(T (k))2χ(|T (k)| > εB(n)

2
)|=(k − 1)],

I12(n) =
1

B2(n)

[nt]∑

k=1

E[(T (k))2χ(|ξk − α(k)| > εB(n)

2
)|=(k − 1)].

Due to Lemma 6 we obtain that

I11(n) ≤ Υ( εB(n)
4

)

B2(n)

[nt]∑

k=1

Z(k−1)+
16B2

ε2B4(n)

[nt]∑

k=1

(Z(k−1))2+
2B

εB3(n)

[nt]∑

k=1

(Z(k−1))3/2,

where Υn(ε) = E[X̄2
11χ(|X̄11| > ε)]. As it was proved, the sum in the first

term divided by B2(n) as n → ∞ converges in probability to t2+α. The
second term as n → ∞ converges in probability to zero due to (16). To
estimate the last term we use inequality

n∑

k=1

akbk ≤
√√√√

n∑

k=1

a2
k

n∑

k=1

b2
k (32)

and obtain that it is not greater than

2B

ε

√√√√√ 1

B4(n)

[nt]∑

k=1

(Z(k − 1))2

√√√√√ 1

B2(n)

[nt]∑

k=1

Z(k − 1)

and therefore also converges to zero in probability as n → ∞. Hence we

proved that I11(n)
P→ 0 as n →∞ for any ε > 0.

Consider I12(n). Using independence of the immigration and reproduc-
tion processes, Chebishev inequality and (20), we have

I12(n) ≤ 4B

ε2B4(n)

[nt]∑

k=1

Z(k − 1)β(k).

Taking into account inequality

[nt]∑

k=1

EZ(k − 1)β(k) ≤ A([nt])σ2([nt]) (33)

14



we derive that I12(n)
P→ 0 as n →∞.

To estimate I2(n) we take into account that I2(n) ≤ σ2([nt])/B2(n) and

due to condition σ2(n) = o(∆2(n)) conclude that I2(n)
P→ 0 as n → ∞.

Theorem is proved.

Proof of Theorem 2. We again prove fulfilment of conditions of Theorem
A. Since B2(n) ∼ σ2(n) as n →∞ under conditions of Theorem 2, first term
in (29) tends to t1+β as n →∞. Due to Lemma 3

[nt]∑

k=1

EZ(k − 1) ∼ constant

n
∆2(n) (34)

as n →∞ and appealing to Lemma 4 we derive that the second term in (29)
converges to zero in probability as n →∞. Hence condition (27) is satisfied
with C(t) = t1+β.

In the proof of fulfilment of Lindeberg condition, convergence to zero in
probability of term I1(n) in (31) will remain true under the conditions of
Theorem 2. Consider I2(n). Using inequality (23) we obtain that

I2(n) ≤ δn(
ε

2
) +

1

B2(n)

[nt]∑

k=1

β(k)P{|T (k)| > εB(n)

2
|=(k − 1)}. (35)

It follows from Chebishev inequality and (20) that the second term in (35)
is dominated by

4B

ε2B4(n)

n∑

k=1

β(k)Z(k − 1).

Using (33) one can prove that the second term converges to zero in proba-

bility as n → ∞. Consequently I2(n)
P→ 0 as n → ∞ for each ε > 0 under

conditions of Theorem 2. Theorem is proved.

Proof of Theorem 3. Under conditions of Theorem 3 first term in (29)
tends to θt1+β. Using (34), Lemma 4 and taking into account Remark 1, we
obtain that the second term converges to (1−θ)t2+α in probability as n →∞.
Consequently condition (27) is satisfied with C(t) = θt1+β + (1 − θ)t2+α =
t2+α.

The fulfilment of the Lindeberg condition can be proved similarly as in
the proof of previous theorems. Therefore its proof is omitted. The assertion

15



of Theorem 3 again follows from Theorem A.

Proof of Theorem 4. We obtain from (6) that

Ân − 1 =

∑n
k=1 Z(k − 1)M(k)∑n

k=1 Z2(k − 1)
=:

D(n)

Q(n)
. (36)

Rewrite D(n) as D(n) = D1(n) + D2(n), where

D1(n) =
n∑

k=2

k−1∑

i=1

M(i)M(k), D2(n) =
n∑

k=2

A(k − 1)M(k).

Consider D1(n). Since

D1(n) =
n∑

k=1

k∑

i=1

M(i)M(k)−
n∑

k=1

M2(k),

using simple identity

(
n∑

k=1

M(k))2 = D1(n) +
n∑

k=1

k∑

i=1

M(i)M(k),

we obtain that

D1(n) =
B2(n)

2
Y 2

n (1)− 1

2

n∑

k=1

M2(k). (37)

It was shown in the proof of Theorem 1 that

1

B2(n)

[nt]∑

k=1

E[M2(k)|=(k − 1)]
P→ t2+α

as n → ∞ for each t ∈ R+. Using this and that B2(n) ∼ ∆2(n), A(n) ∼
C∆(n)

√
α(n) as n →∞, where C is a positive constant, one can prove

1

K(n)

n∑

k=1

M2(k)
P→ 0 (38)

as n → ∞, where K(n) = A(n)∆(n). It follows from Theorem 1 that

Y 2
n (1)

D→ W 2(1) as n →∞. Taking this into account in (37) we have that as
n →∞

1

K(n)
D1(n)

P→ 0. (39)
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Now we consider D2(n). It is not difficult to see that

D2(n) =
n∑

k=2

k−1∑

i=1

α(i)M(k) =
n−1∑

i=1

α(i)
n∑

k=i+1

M(k).

Therefore, taking into account (24), it can be written as

1

K(n)
D2(n) =

∫ 1

0
[Yn(1)− Yn(t)]dAn(t), (40)

where An(t) = A([nt])/A(n), n ≥ 1, are non-decreasing functions of t.
Now we consider sequence of functionals Ψn : D(R+, R) 7→ R, n ≥ 1

defined by

Ψn(x) =
∫ 1

0
[x(1)− x(t)]dAn(t).

Since An(t) → t1+α as n → ∞ uniformly on compact subsets of [0,∞), for
all x, xn ∈ D(R+, R) such that sup |xn − x| → 0, n →∞ we have |Ψn(xn)−
Ψ(x)| → 0 as n →∞, where

Ψ(x) = (1 + α)
∫ 1

0
[x(1)− x(t)]tαdt.

It follows from Theorem 1 and Lemma 4.1 in [7] that Ψn(Yn)
D→ Ψ(W (t2+α))

as n →∞. Hence we conclude that

1

K(n)
D2(n)

D→ η (41)

as n →∞, where

η = W (1)− (1 + α)
∫ 1

0
W (t2+α)tαdt.

Now we consider Q(n). It can be written as Q(n) = Q1(n) + 2Q2(n) +
Q3(n), where

Q1(n) =
n∑

k=1

A2(k − 1), Q2(n) =
n∑

k=1

A(k − 1)(Z(k − 1)− A(k − 1)),

Q3(n) =
n∑

k=1

(Z(k − 1)− A(k − 1))2.

17



It follows from Lemma 3 that

lim
n→∞

Q1(n)

nA2(n)
= (2α + 3)−1. (42)

To estimate Q2(n) we consider

Q2(n)

nK(n)
=

n∑

k=1

An(
k

n
)
∫ k+1

n

k
n

Yn(t)dt.

Now we define functionals Φn : D(R+, R) 7→ R, n ≥ 1 by

Φn(x) =
n−1∑

k=1

An(
k

n
)
∫ k+1

n

k
n

x(t)dt.

It is easy to see that for any x, xn ∈ D(R+, R) such that sup |xn − x| →
0, n →∞ we have |Φn(xn)− Φ(x)| → 0 as n →∞, where

Φ(x) =
∫ 1

0
t1+αx(t)dt.

We have
Q2(n)

nK(n)
=

∫ 1

0
An(t)Yn(t)dt = Ψn(Yn),

where Ψn(x) :=
∫ 1
0 An(t)x(t)dt. Therefore again using Theorem 1 and Lemma

4.1 in [7] we conclude that

Q2(n)

nK(n)
D→

∫ 1

0
t1+αW (t2+α)dt. (43)

Since A2(n)/K(n) ∼
√

(2 + α)α(n)/
√

B(1 + α) as n →∞ we have

Q2(n)

nA2(n)
P→ 0 (44)

as n →∞. Now we consider

Q3(n)

nB2(n)
=

∫ 1

0
Y 2

n (t)dt.
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It follows from Theorem 1 and continuous mapping theorem that right side
of the last equality as n → ∞ converges to

∫ 1
0 W 2(t2+α)dt in distribution.

Therefore, taking into account (17) and the second relation in (19), we con-
clude that

Q3(n)

nA2(n)
P→ 0 (45)

as n →∞.
Now we obtain from relations (36), (39), (41) and (42)-(45) that as n →∞

n
√

α(n)(Ân − 1)
D→ (2α + 3)

√
B(1 + α)

2 + α
η. (46)

Since η can be written as η = (1 + α)
∫ 1
0 tα[W (1)−W (t2+α)]dt, we have

Eη2 =
∫ 1

0

∫ 1

0
sαtαR(t, s)dsdt,

where

R(t, s) = (1 + α)2E[(W (1)−W (s2+α))(W (1)−W (t2+α))].

We consider

Eη2 =
∫ 1

0

∫ t

0
sαtαR(t, s)dsdt +

∫ 1

0

∫ 1

t
sαtαR(t, s)dsdt. (47)

By a standard technique we obtain that the first term on the right of (47) is
equal to

∫ 1

0

∫ t

0
sαtαE[(W (1)−W (t2+α))2]dsdt =

α + 2

2(3α + 4)
.

In a similar way we derive that the second term on the right of (47) is also
equal to (α + 2)/(2(3α + 4)). Hence we have

Eη2 =
α + 2

3α + 4
,

which implies the desired result. Theorem 4 is proved.

19



Acknowledgments

This paper is based on a part of results obtained under research project
MS/THEOREM/335 funded by KFUPM, Dhahran, Saudi Arabia. My sin-
cere thanks to King Fahd University of Petroleum and Minarals for all the
supports and facilities I had. I am grateful to the referee for bringing to my
attention Lemma 1, for careful reading of the first version of the paper and
for his valuable comments.

References

[1] Aliev, S. A. (1985). A limit theorem for Galton-Watson branching processes
with immigration. Ukrain. Mat.Zh., 37, 656-659.
[2] Alzaid, A. A. Al-Osh, M. (1990). An integer-valued pth order autoregres-
sive (INAR(p)) process. J. Appl. Prob., 27, 314-324.
[3] Bingham N. H., Goldie C. M., Teugels J. L. (1987). Regular variation,
Encyclopedia of Mathematics and its Applications Vol 27, Cambridge Uni-
versity Press, Cambridge.
[4] Franke, J., Seligmann, T. (1993). Conditional maximum likelihood es-
timates for INAR(1) processes and their application to modelling epileptic
seizure counts. In Developments in time series analysis, ed. T. S. Rao,
Chapman and Hall, London, 310-330.
[5] Dion, J. P., Gauthier, G., and Latour, A. (1995). Branching processes
with immigration and integer-valued time series. Serdica Math. J. 21, 123-
136.
[6] Feller, W. (1951). Diffusion Processes in Genetics. In Proceedings Of
the Second Berkeley Symposium on Mathematical Statistics and Probability,
1950, ed. Neyman P., 227-246, University of California Press.
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