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ABSTRACT

We consider a population of n individuals. Each of these individuals generates
a discrete time branching stochastic process. We study the number of ances-
tors S(n, t) whose offspring at time t exceeds level θ(t), where θ(t) is some
positive valued function. It is proved that S(n, t) may be approximated as
t →∞ and n →∞ by some stochastic processes with independent increments.
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1. INTRODUCTION

We consider a population containing n individuals of the same type at time

zero. Each of these individuals (ancestors) initiates a discrete time branching

population process. Let θ(t), t ∈ IN0 = {0, 1, . . .} be a positive valued function

and S(n, t) be the number of ancestors having more than θ(t) descendants at

time t.
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Branching processes started by the initial ancestors may be considered as

population processes describing population growth in different regions of an

area R. Then it is easy to see that S(n, t) is the number of regions of R whose

population at time t exceeds level θ(t). Process S(n, t) can be associated with

a problem on the number of vertexes of rooted random trees as well (see [1], for

example). In fact each realization of the scheme under the consideration can

be interpreted as a forest containing n rooted trees. Consequently a realization

of S(n, t) is the number of trees in the forest having more than θ(t) vertexes

of the level t.

We note here the rise of interest in recent years to problems concerning ex-

trema in branching stochastic processes. For example the recent publications

in this direction have been devoted to the asymptotic behaviour of the expec-

tation of the maxima of branching processes ([2], [3]), to the limit distribution

for the maximum family size ( [4], [5]) and to other problems. Limit distri-

butions for the index of the first process in a sequence of branching processes

exceeding some fixed or increasing levels were obtained in [6]. Thus the study

of S(n, t) can be considered as a contribution to this program of investigation

of the extrema in population processes.

It follows from well-known properties of branching processes (see [7], for

example) that if n is fixed and the process is critical or subcritical, then S(n, t)

in the long run equals to zero with probability 1, for any level function θ(t).

What happens if the size of the initial population is large? In other words

what is the asymptotic behaviour of S(n, t) if the number of initial ancestors

increases? To answer these questions we consider family of stochastic process

Y (x, t) = S([m(t)x], t), where x ∈ [0,∞) and m(t) → ∞ as t → ∞. We

approximate Y (x, t) by some known processes with independent increments.
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Behaviour of the parameter m(t) and the form of limit processes naturally

depend on criticality of the initial branching process. It turns out that, if

the process is supercritical, then Y (x, t) may be approximated by either a

“binomial process” (process with independent and binomially distributed in-

crements) or by the Brownian motion depending on the behaviour of m(t). If

the process is subcritical or critical, then the approximating process is either

a Poisson process or the Brownian motion.

Now we give a rigorous definition of the process S(n, t). Let Ai
t be the

random population at time t generated by i-th initial ancestor, i = 1, 2, . . . , n.

For any positive valued function θ(t) functional S(n, t) = S(n, t)[θ] can be

defined as following

S(n, t) = #{i : card Ai
t > θ(t)}.

Let Xi(t) = card Ai
t be i-th branching process and X(t) be a branching

process such that X(t)
d
= Xi(t) for all i ≥ 1. We denote {Pk, k ≥ 0} the

offspring distribution of X(t) and put

f(s) =
∞∑

k=0

Pks
k, R(x, t) = P{X(t) > x}, Q(t) = R(0, t),

A =
∞∑

k=1

kPk, σ2 =
∞∑

k=1

k(k − 1)Pk.

Let D = D[0, 1] be the space of functions y(x) defined on [0, 1] that are right

continuous and have left-hand limits at any point x ∈ [0, 1]. It is clear that

realizations of the Y (x, t) = S([m(t)x], t)), x ∈ [0, 1], are elements of D for any

t ∈ N0. We equip D with the Skorohod metric ([8], see also [9]). The topology

of weak convergence of measures on Borel sets in D induced by this metric

is called the Skorohod topology. In this paper we approximate the process
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Y (x, t) with respect to Skorohod topology on D[0, 1]. In the case of Poisson

limiting process we prove convergence in Skorohod topology on D[0,∞).

In part 2 we provide main theorems on convergence of S(n, t). Proofs of

these theorems are based on two preliminary results which are given in part 3.

Part 4 contains proofs of main theorems.

2. MAIN THEOREMS AND COROLLARIES

First we consider the critical case, i.e., the case of A = 1, 0 < σ2 < ∞. We

assume that there exits the following

lim
t→∞

θ(t)

t
= θ ∈ [0,∞] (1)

and consider Y (x, t) = S([tx], t), i.e., m(t) = t.

Theorem 1. If A = 1, 0 < σ2 < ∞ and (1) is satisfied, then Y (x, t)
D→ Y (x)

as t → ∞, where D means convergence in the Skorohod topology on D[0,∞)

and Y (x), x ∈ [0,∞) is the Poisson process with EY (x) = 2x exp{−2θ/σ2}/σ2

for θ ∈ [0,∞) and it is a “zero process” (i.e., Y (x) ≡ 0 with probability 1 for

all x ∈ [0,∞)) for θ = ∞.

Theorem 1 gives an approximation of S(n, t) for the case when n = o(t) or

n ³ t as t → ∞. Now we consider the case when n/t → ∞, t → ∞. More

precisely we put m(t) = a(t)t, where a(t) → ∞. We define the stochastic

process W
(1)
t (x) as follows

W
(1)
t (x) =

S([ta(t)x], t)− [ta(t)x]R(θ(t), t)√
a(t)

,

where R(θ(t), t) = P{X(t) > θ(t)}, x ∈ [0, 1].

Theorem 2. If A = 1, 0 < σ2 < ∞ and (1) is satisfied, then W
(1)
t (x)

D→
W (1)(x) as t → ∞, where D means convergence in the Skorohod topology
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on D[0, 1] and W (1)(x) is the Brownian motion with zero shift and with the

diffusion parameter 2σ−2 exp{−2θ/σ2} for θ ∈ [0,∞) and it is a zero process

for θ = ∞.

Example 1. Suppose that the initial ancestors are labeled by 1, 2, ... Let ν(t)

be the number of the first ancestor having more than θ(t) descendants at time

t, i.e.

ν(t) = min{k : Xk(t) > θ(t)}.

Then it follows from Theorem 1 that

lim
t→∞P{ν(t) ≤ tx} = lim

t→∞P{Y (xt, t) ≥ 1} = P{Y (x) ≥ 1}.

Thus we have the following limit theorem for ν(t).

Corollary 1. If A = 1, 0 < σ2 < ∞ and condition (1) is satisfied, then

ν(t)/t → ν as t →∞ in distribution and

P{ν > x} = exp{−2x

σ2
e−2θ/σ2}.

Now we consider the case of supercritical processes. It is known [7] that

if A > 1, EX(1) ln X(1) < ∞, then X(t)A−t converges with probability one

to a random variable W and the Laplace transform ϕ(λ) of W satisfies the

following equation

ϕ(λ) = f

(
ϕ

(
λ

A

))
.

It is also known that the distribution function π(x) of W is absolute continuous

for x > 0 and has an atom of the mass q at x = 0. Here q is the extinction

probability.

We assume that there exists

lim
t→∞ θ(t)A−t = θ ∈ [0,∞] (2)
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and
∞∑

k=2

kPk ln k < ∞ (3)

and consider “discrete time” process S(n, t), n = 0, 1, . . . for t ∈ IN0. Note that

here n is the time parameter.

Theorem 3. If A > 1 and conditions (2) and (3) are satisfied, then S(n, t)
w→

ξ(n), n ∈ IN0 as t → ∞, where w means convergence in the weak sence

and ξ(n) is a stochastic process with independent and binomially distributed

increments such that

P {ξ(ni)− ξ(ni−1) = k} =

(
ni − ni−1

k

)
[1− π(θ)]k π(θ)ni−ni−1−k

for any 0 ≤ ni−1 < ni < ∞, ni ∈ IN0, for θ ∈ [0,∞) and it is a zero process

for θ = ∞.

Example 2. Let the offspring distribution be the positive geometric, i.e.

Pk = α(1 − α)k−1, k ≥ 1 and P0 = 0. In this case the offspring generating

function has the form f(s) = αs(1 − βs)−1, β = 1 − α and A = α−1 and the

equation for the Laplace transform is:

ϕ

(
λ

α

)
=

αϕ(λ)

1− βϕ(λ)
.

Now it is not difficult to check that the Laplace transform ϕ(λ) = α(α + λ)−1

satisfies the above equation. Hence the limit distribution π(x) is exponential

with the density function αe−αx and Theorem 3 gives the following result.

Corollary 2. If conditions of Theorem 3 are satified and the offspring dis-

tribution is the positive geometric with the parameter 0 < α < 1, then for

θ ∈ [0,∞) the limit process ξ(n) in Theorem 3 is binomial such that

P {ξ(ni)− ξ(ni−1) = k} =

(
ni − ni−1

k

)
e−αθk

[
1− e−αθ

]ni−ni−1−k
.
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Example 3. If we consider the process ν(t) defined in Example 1, then it

follows from Theorem 3 that

lim
t→∞P{ν(t) ≤ n} = lim

t→∞P{S(n, t) ≥ 1} = P{ξ(n) ≥ 1}.

Consequently we obtain the following limit theorem for ν(t).

Corollary 3. If A > 1 and conditions (2) and (3) are satisfied, then for any

fixed n

lim
t→∞P{ν(t) ≤ n} = 1− {π(θ)}n.

In particular, if the offspring distribution is as in Example 2, then the limit

distribution of ν(t) is positive geometric with the parameter e−αθ.

Theorem 3 shows that stochastic process S(n, t) for fixed n ∈ IN0 can be

approximated as t → ∞ by a binomial process. Now we consider the case

when n →∞. Let a(t) be a positive function such that a(t) →∞ as t →∞.

We consider the following stochastic process

W
(2)
t (x) =

S([a(t)x], t)− [a(t)x]R(θ(t), t)√
a(t)

,

where x ∈ [0, 1].

Theorem 4. If A > 1 and conditions (2) and (3) are satisfied, then W
(2)
t (x)

D→
W (2)(x) as t →∞, where W (2)(x), x ∈ [0, 1], is the Brownian motion with zero

shift and with diffusion parameter π(θ)(1−π(θ)) for θ ∈ [0,∞) and it is a zero

process for θ = ∞.

Example 4. If, as in Example 2, the offspring distribution is the positive

geometric of the parameter 0 < α < 1, then it is not difficult to see that the

Brownian motion in Theorem 4 has the diffusion parameter e−αθ
(
1− e−αθ

)
.
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Let now A < 1, i.e., the initial process is subcritical. In this case we use

the following limit theorem for subcritical processes (See [10], p. 29). If A < 1,

there exist

lim
t→∞P{X(t) = j|X(t) > 0} = P ∗

j ; j ≥ 1, (4)

and the generating function F ∗(s) of P ∗
j , j ≥ 1 satisfies the equation

1− F ∗(s)) = A(1− F ∗(s)). (5)

It is also known that, if A ≤ 1, then Q(t) = R(0, t) → 0 as t → ∞. If A < 1

and in addition EX(1) ln X(1) < ∞, then we have the following asymptotics

for Q(t) (see [10], p. 56)

Q(t) ∼ KAt, 0 < K =
∞∏

m=0

B(P{X(m) = 0}) < ∞, (6)

where B(s) = (1− f(s))/(A(1− s)).

Let Y (x, t) = S([xA−t], t), x ∈ [0,∞).

Theorem 5. If A < 1 and (3) is satisfied, then Y (x, t)
D→ Y (x) as t → ∞,

where D means convergence in Skorohod topology on D[0,∞) and Y (x) is the

Poisson process with EY (x) = Kx
∑

j>θ

P ∗
j for θ(t) ≡ θ ∈ IN0 and it is a zero

process if θ(t) →∞.

Now we consider the case nAt → ∞. Let, as before, a(t) be a positive

valued function such that a(t) →∞ as t →∞. We define process W
(3)
t (x) by

the relation

W
(3)
t (x) =

1√
a(t)

{
S([xA−ta(t)], t)− [xA−ta(t)]R(θ(t), t)

}
,

where x ∈ [0, 1].

Theorem 6. If A < 1 and (3) is satisfied, then W
(3)
t (x)

D→ W (3)(x) as

t → ∞, where W (3)(x), x ∈ [0, 1], is the Brownian motion with zero shift and
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with diffusion parameter K
∑

i>θ

P ∗
i for θ(t) = θ ∈ IN0 and it is a zero process if

θ(t) →∞.

3. TWO PRELIMINARY RESULTS

Before starting proofs of theorems of part 2 we prove two preliminary the-

orems. Then the main results can be easily obtained from these theorems (see

part 4).

Let {{ξni, i = 1, 2, ..., kn}, n = 1, 2, ...} be an infinite double array of random

variables. Assume that for any n ξni, i = 1, 2, ..., kn are independent and

identically distributed Bernoulli random variables with parameter pn (i.e. have

the distribution b(1, pn)). Define a sequence of staochastic processes {S(n)} in

a Skorohod space D by

S(n)(τ) =
[τkn]∑

i=1

ξni, τ ∈ [0,∞), n = 1, 2, ... (7)

Theorem 7. If kn → ∞ and knpn → C ∈ (0,∞) as n → ∞, then S(n)

converges in D[0,∞) to a homogeneuous Poisson process with intensity C.

Proof. First note that [τkn]pn → Cτ, n → ∞, and by classical Poisson limit

theorem we have that distribution of S(n)(τ) for any τ converges to the Poisson

distribution with the parameter Cτ . Since increments of S(n) are independent,

this means that joint distributions of increments converge to ones of the Poisson

process. According to Corollary 1 to Theorem 5 in [9] (see [9], p. 31) from

convergence of increments we obtain that the finite dimensional distributions

converge to respective distributions of the Poisson process.

Now we prove convergence in D[0,∞). It follows from Theorem VI. 16 in

[11] that to prove convergence in Skorohod topology on D[0,∞), besides of

convergence of finite dimensional distributions, it suffices to show satisfaction

9



of so called Aldous condition. Namely we have to prove that for each fixed T

∆S(n) = S(n)(ρ(n) + δ(n))− S(n)(ρ(n))
P→ 0

as n →∞, where {δ(n), n ≥ 1} is a sequence of positive numbers converging to

zero and {ρ(n), n ≥ 1} is a seguence of stopping times taking values in [0, T ].

Recall that the stopping time property means that the event {ρ(n) ≤ x} should

belong to the σ-field generated by random variables {S(n)(u), 0 ≤ u ≤ x}.
Let ε > 0. By Chebyshev inequality for positive random variables we have

P{∆S(n) > ε} ≤ 1

ε

{
ES(n)(ρ(n) + δ(n))− ES(n)(ρ(n)

}
.

If we use the definition of S(n) and generalized Wald’s identity (see [12], The-

orem 3, Ch. VII.2), we obtain that the expression on the right side equals

1

ε
{E[(ρ(n) + δ(n))kn]− E[ρ(n)kn]}pn.

Taking into account the condition knpn → C ∈ (0,∞), n → ∞, we conclude

that the last expression converges to zero as n → ∞ for any sequence of

stopping times {ρ(n)} and sequence δ(n) → 0, n →∞. Thus ∆S(n) P→ 0, n →
∞, i.e. Aldous condition is satisfied. Theorem 7 is proved.

Theorem 8. Assume that there exists a sequence {ln, n ≥ 1} such that

lnpn(1 − pn) → C ∈ (0,∞) and kn/ln → ∞. Then the sequence of processes

{X(n)}n=1,2,... defined by

X(n)(τ) =
S(n)(τ)− [τkn]pn√

Ckn/ln
, τ ∈ [0, 1],

converges in D[0, 1] to the Wiener process.

Proof. Since S(n)(t) for any fixed τ is binomial b([τkn], pn) random variable,

by the central limit theorem it follows that the distribution of
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S(n)(τ)− [τkn]pn√
[τkn]pn(1− pn)

converges to the standard normal distribution. Now, taking into account that

[τkn]pn(1 − pn)/(Ckn/ln) → τ as n → ∞ and independence of increments

of X(n), we obtain that the joint distribution of it’s increments converges as

n →∞ to joint distributions of increments of the Wiener process. Hence due

to the mentioned above Corollay 1 in [9] (see [9], p. 31), the finite dimen-

sional distributions converge to respective finite dimensional distributions of

the Wiener proces.

Now we prove convergence in Skorohod topology. According to Theorem

15.6 in [9], besides of convergence of finite dimensional distributions, it suffices

to show that there exists a positive constant C0 such that for 0 ≤ r < s < τ ≤ 1

E(X(n)(s)−X(n)(r))2(X(n)(τ)−X(n)(s))2 ≤ C0(τ − r)2. (8)

In fact because the increments of X(n)(τ) are independent, the expectation

on the left side of (8) is non greater than

([skn]− [rkn])([τkn]− [skn])p2
n(1− pn)2l2n/C

2k2
n ≤ C0(t− r)2.

The theorem is proved.

4. PROOFS OF MAIN THEOREMS

Proof of Theorem 1. First we prove that, if conditions of Theorem 1 are

satisfied, then

R(θ(t), t) ∼ 2

σ2t
exp

{
−2θ

σ2

}
, t →∞. (9)

For it we use the following well known results for critical branching processes
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(see [10], Ch II). If A = 1, 0 < σ2 < ∞, then for any fixed x > 0

P{Q(t)X(t) > x|X(t) > 0} ∼ e−x, Q(t) ∼ 2/σ2t, as t →∞. (10)

Taking into account condition (1) and using (10) we obtain that

R(θ(t), t) = P{X(t) > θ(t)|X(t) > 0}Q(t)

is equivalent as t → ∞ to the expression on the right side of (9). Thus as-

sretion of Theorem 1 follows from Theorem 7 by taking kt = t, t ∈ IN0, C =

(2/σ2)exp{−2θ/σ2} and ξti =indicator of {Xi(t) > θ(t)}.

Proof of Theorem 2. It follows from (9) that pt(1 − pt)lt → C as t → ∞,

where pt = R(θ(t), t), lt = t and C as in the proof of Theorem 1. Thus we

obtain the assertion of Theorem 2 from Theorem 8 by taking kt = [ta(t)], t ∈
IN0. The theorem is proved.

Proof of Theorem 3. First we prove that, if conditions of Theorem 3 are

satisfied, then

R(θ(t), t) → 1− π(θ), (11)

as t →∞. To do it we consider the estimate

|P{X(t) ≤ θ(t)}−π(θ)| ≤ sup
x
|P{X(t)A−t ≤ x}−π(x)|+ |π(θ(t)A−t)−π(θ)|.

(12)

First term on the right side of (12) tends to zero as t → ∞ due to the limit

theorem for supercritical processes. It follows from condition (2) and continuity

of π(x) that the limit as t →∞ of the second term is also zero.

Recall that S(n, t), n = 1, 2, ..., t ∈ IN0, is binomial b(n, pt) random variable

with pt = R(θ(t), t). Since pt → 1−π(θ) as t →∞ due to (11), the distribution
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of S(n, t) for any fixed n as t →∞ converges to b(n, 1− π(θ)). Consequently

the finite dimensional distributions of S(n, t) converge to respective finite di-

mensional distributions of the proces ξ(n). Theorem 3 is proved.

Proof of Theorem 4. It follows from (11) that R(θ(t), t)(1 − R(θ(t), t)) →
π(θ)(1−π(θ)) as t →∞. Consequently the assertion of Theorem 4 follows from

Theorem 8, if we take pt = R(θ(t), t), lt = 1, kt = [a(t)] and C = π(θ)(1−π(θ)).

Proof of Theorem 5. First we note that, if conditions of Theorem 5 are

satisfied, then

R(θ(t), t) ∼ KAt
∑

j>θ

P ∗
j , t →∞. (13)

In fact, since R(θ(t), t) = P{X(t) > θ(t)|X(t) > 0}Q(t), relation (13) follows

from the limit theorem for subcritical processes and (6).

Now we obtain the proof of the theorem from Theorem 7 by taking pt =

R(θ(t), t), kt = [A−t] and C = K
∑

j>θ P ∗
j . The theorem is proved.

Proof of Theorem 6. It follows from (13) that pt(1 − pt) → C as t → ∞,

where pt and C as in the proof of Theorem 5. Thus the assertion of Theorem 6

follows from Theorem 8, if we take kt = [a(t)A−t] and lt = A−t. The theorem

is proved.
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