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ABSTRACT

It is well known that the set of nonnegative integers is the state-space of
usual branching stochastic processes. However in many applications one may
have situations when it is difficult to count the number of individuals in the
population, but some non-negative characteristic, such as volume, weight or
product produced by the individuals can be measured. To model this kind
of situation, branching stochastic processes with continuous state-space are
introduced. In this paper two theorems which establish relationship between
asymptotic behavior of processes continuous and discrete state-space and
with immigration in varying environment will be proved.
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1 Introduction

The theory of branching stochastic processes is a rapidly developing part of
the general theory of stochastic processes. During quite a long time the main
object of investigation in the theory of branching processes was the number
of individuals (particles) at a given time. So in classic models of branching
processes the state-space is the set of nonnegative integers. However in many
applications one may have situations when it is difficult to count the number
of individuals in the population, but some non-negative characteristic, such
as volume, weight or product produced by the individuals can be measured.
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At the end of sixties M. Jirina [6], [7] defined a branching stochastic process
with continuous state space as a homogeneous Markov process the transition
probabilities of which satisfy some ”branching condition”. Later many pa-
pers were published to study this kind of processes (see [5], [10], [11], [14],
[16]). A model of the branching process with continuous state space has
appeared in [13] as limiting for branching processes with generalized immi-
gration. Kallenberg (1979) introduced a branching model with continuous
state-space and studied it under the assumption that the ”offspring distri-
bution” is infinitely divisible. Adke and Gadag (1995) defined a new model
of continuous state-space process with immigration using in the ”branching
condition” a counting process with independent and stationary increments.

In the paper [1] the authors investigated some distributional properties
(and the extinction probability) of the process in the case when the offspring
and immigration distributions vary from generation to generation (so called
varying environments). However the asymptotic results are obtained under
the assumption of fixed environments. On the other hand in applications
the immigration rate may usually be affected by seasonal and global changes
of the environment. In this paper we will study asymptotic behavior of
the continuous state-space branching stochastic process with immigration in
varying environments.

It is convenient to define the process, which we are going to consider,
as a family of non-negative random variables describing the amount of a
product produced by individuals of the population. The initial state of the
process is given by a non-negative random variable X0 . The amount of the
product X1 of the first generation is defined as the sum of random products
produced by N1(X0) individuals and the product U1 of immigrating to the
first generation individuals. Similarly the amount X2 of the product of the
second generation is defined as the sum of products produced by N2(X1)
individuals and U2 , and so on. Here Nk(t), k ≥ 1, t ∈ T, are counting
processes with independent stationary increments, T is either R+ = [0,∞)
or Z+ = {0, 1, 2, ...} and Uk, k ≥ 1, are non-negative random variables. In
the paper [1] limit distributions are obtained for process Xn when Un, n ≥ 1
are i.i.d. random variables, which corresponds to the fixed environment. In
particular when the process is critical it is shown that the linearly normalized
process has a gamma limiting distribution. If one does not assume that
Un, n ≥ 1 have a common distribution, several rather important questions
appear: i) Under which conditions we may still use the linear normalization
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to get a non-degenerate limiting distribution? ii) When will the limiting
gamma distribution be preserved? iii) How does a change of the rate of
immigration affect the asymptotic behavior of the process ? In this paper we
expect to obtain results which give answers for these kinds of questions.

2 Main theorems

We now give a detailed definition of the process which we are going to con-
sider. Let {Win, i, n ≥ 1} be a double array of independent and identically
distributed non-negative random variables, {Nn(t), t ∈ T, n ≥ 1} be a family
of nonnegative, integer-valued independent processes with independent sta-
tionary increments, with Nn(0) = 0 almost surely, T is either R+ = [0,∞)
or Z+ = {0, 1, ...}.

We define a new process Xn, n ≥ 0, as following. Let the initial state of
the process be X0 which is an arbitrary non-negative random variable and
for n ≥ 0

Xn+1 =
Nn+1(Xn)∑

i=1

Win+1 + Un+1, (1)

where {Un, n ≥ 1} is e sequence of independent non-negative random vari-
ables. Assume that families of random variables {Win, i, n ≥ 1}, {Un, n ≥ 1}
of stochastic processes {Nn(t), t ∈ T, n ≥ 1} and random variable X0 are in-
dependent. This process was first introduced in [1], where the authors have
given a detailed comparisons of the process with classic models of Galton-
Watson processes.

It is also shown in [1] that Z(n) = Nn(Xn−1) is a Galton-Watson process
with an immigration component. We now provide a result establishing a
relationship, in a sense of limiting behavior, between processes Xn and Z(n).
In order to do that we use the following Laplace transforms

G(λ) = Ee−λWni , Hn(λ) = Ee−λUn .

We also denote

∆(n) =
P{Z(n) > 0}
P{Xn > 0} , δ(n, λ) =

1−Hn(λ)

P{Z(n) > 0} .
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Let the sequences of positive numbers {k(n), n ≥ 1} and {a(n), n ≥ 1}
be such that for each λ > 0 there exists

lim
n→∞ k(n)(1−G(

λ

a(n)
)) = b(λ) ∈ (0,∞) (2)

Theorem 1. Let ∆(n) → 1, n → ∞ and δ(n, λ/a(n)) → 0 for each λ > 0
as n →∞. Then as n →∞

E[e−λXn/a(n)|Xn > 0] → φ(b(λ)) (3)

for λ > 0, if and only if as n →∞ for each λ > 0

E[e−λZ(n)/k(n)|Z(n) > 0] → φ(λ). (4)

Proof. We consider the following obvious identity

E[e−λXn |Xn > 0] = 1− 1− Ee−λXn

P (Xn > 0)
. (5)

It follows from definition (1) of the process Xn by total probability arguments
that

Ee−λXn = Hn(λ)EGZ(n)(λ). (6)

We obtain from (6) that

1− Ee−λXn

P (Zn > 0)
= 1− E[GZ(n)(λ)|Z(n) > 0] + δ(n, λ)E[GZ(n)(λ)].

Hence the ratio on the right side of (5) equals

∆(n)
1− Ee−λXn

P (Zn > 0)
= −∆(n)E[GZ(n)(λ)|Z(n) > 0]−∆(n)[1+δ(n, λ)EGZ(n)(λ)].

If we use this in relation (5) we obtain

E[e−λXn|Xn > 0] = ∆(n)E[GZ(n)(λ)|Z(n) > 0] + ε(n), (7)

where
ε(n) = 1−∆(n)(1 + δ(n, λ))E[GZ(n)(λ)].

4



Let (4) be satisfied for every λ > 0. Then, it clearly follows from con-
tinuity of the Laplace transform ϕ(λ), that the convergence in (4) holds
uniformly with respect to λ from arbitrary finite interval. Since ln x =
−(1− x) + o(1− x), x → 1, we obtain from condition (2) that as n →∞

tn = k(n) ln G(
λ

a(n)
) → b(λ). (8)

Therefore for each fixed λ > 0 there is such a T = T (λ), that 0 < tn ≤ T for
any n = 1, 2, ... Now we consider (7) replacing λ by λ/a(n). It follows from
(8) that

E[GZ(n)(
λ

a(n)
)|Z(n) > 0] = E[e−tnZ(n)/k(n)|Z(n) > 0]. (9)

We show that the Laplace transform (9) as n → ∞ approaches ϕ(b(λ)). In
order to do it we consider the following relation:

E[GZ(n)(
λ

a(n)
)|Z(n) > 0]− ϕ(b(λ)) = I1 + I2, (10)

where

I1 = E[e−tnZ(n)/k(n)|Z(n) > 0]− ϕ(tn), I2 = ϕ(tn)− ϕ(b(λ)).

It follows from (4), due to the uniform convergence, that

|I1| ≤ sup
0<tn<T

|E[e−tnZ(n)/k(n)|Z(n) > 0]− ϕ(tn)| → 0 (11)

as n → ∞. On the other hand I2 → 0 as n → ∞ due to continuity of the
Laplace transform ϕ(λ), for λ > 0. Thus we conclude that as n →∞

E[GZ(n)(
λ

a(n)
)|Z(n) > 0] → ϕ(b(λ)). (12)

Since ∆(n) → 1 and δ(n, λ
a(n)

) → 0 as n → ∞, we obtain that ε(n) → 0 as

n →∞. The assertion (3) now follows from relations (7) and (12). The first
part of Theorem 1 is proved.
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Let now (3) be satisfied. It follows from condition (2) that τn = tn/b(λ) →
1 as n →∞ for each λ > 0 (recall that tn = −k(n) ln G( λ

a(n)
)). We consider

the following Laplace transform:

E[e−Z(n)b(λ)τn/k(n)|Z(n) > 0] = E[GZ(n)(
λ

a(n)
)|Z(n) > 0]. (13)

It follows from relations (3), (7) and (13), due to continuity of ϕ(λ), that

lim
n→∞E[e−Z(n)b(λ)τn/k(n)|Z(n) > 0] = ϕ(b(λ)). (14)

Due to continuity theorem for Laplace transforms (14) means that

{
Z(n)τn

k(n)
|Z(n) > 0

}
D→ ξ

as n → ∞, with Ee−λξ = ϕ(λ). Since τn → 1, n → ∞, we have that
Z(n)/k(n) given Z(n) > 0, as n → ∞ converges to ξ in distribution. If we
write this in terms of Laplace transforms, we get assertion of (4). Theorem
1 is proved completely.

Now we provide similar duality result for unconditional distributions of
processes Z(n) and Xn.

Theorem 2. Let for sequences {a(n), n ≥ 1} and {k(n), n ≥ 1} condition
(2) be satisfied. Then

Ee−λXn/a(n) → ϕ(b(λ)) (15)

if and only if for each λ > 0 as n →∞

Ee−λZ(n)/k(n) → ϕ(λ). (16)

3 The Foster-Williamson Theorem

As it was indicated before process Z(n) = Nn(Xn−1) is a Galton - Wat-
son process with immigration. The offspring distribution and the distribu-
tion of the number of immigrating ”individuals” have Laplace transforms

6



G(f(λ)) = Ee−λξn and Hn(f(λ)) = Ee−ληn , respectively (see [1]). Here
ξn = Nn(Wn−1), ηn = Nn(Un−1) and f(λ) = − log Ee−λNn(1).

We obtain the moments of offspring distribution by standard arguments
as following:

m = Eξn =
d

dλ
G(f(λ))λ=0 = EWEN,

where N = N1(1),W = W1 and for B = Eξn(ξn − 1) we obtain

B = EW [varN − EN ] + EW 2(EN)2.

Now we consider applicability of Theorem 2 to obtain a version of well known
result by Foster and Williamson (1971). They assume convergence in distri-
bution of the normalized immigration process (the partial sum of the number
of immigrating individuals) to a random variable ξ. Since ξ is nonnegative
and has an infinitely divisible distribution its Laplace transform has the form
(see Feller [3], page 426)

Ee−λξ = exp

{
−

∫ ∞

0

1− e−λx

x
dP (x)

}
,

where P (x) is a measure such that
∫∞
0 x−1dP (x) < ∞. First we provide the

theorem for the process Z(n) = Nn(Xn−1) from [4].

Theorem A. If m = 1, B ∈ (0,∞) and

1

n

n∑

k=1

Nk(Uk−1)
D→ ξ, (17)

then Z(n)/n
D→ W , with

EeλW = exp

{
−

∫ ∞

0

1− e−λx

x
dQ(x)

}
,

where Q(x) = R ∗ P (x), R(x) = 1− exp{−2x/B}.

Now we formulate Foster-Williamson result for process Xn.

7



Theorem 3. If m = 1, B ∈ (0,∞) and

EN

n

n∑

k=1

Uk
D→ ξ, (18)

then Xn/n
D→ X, with

EeλX = exp

{
−

∫ ∞

0

1− e−λxEW

x
dQ(x)

}
,

and Q(x) is the same as in Theorem A.

Proof First we show that, if condition (18) is fulfilled, then (17) holds. In
fact, in terms of Laplace transforms (18) is

n∏

k=1

Hk(
λEN

n
) → Ee−λξ. (19)

If we denote the sum in (17) by Sn, we have

Ee−λSn/n =
n∏

k=1

Hk(f(
λ

n
)).

Using relation log x = −(1− x) + o(1− x), x ↓ 1, we obtain that

nf(
λ

n
) = −n log Ee−λN/n ∼ n(1− Ee−λN/n)

as n →∞, consequently nf(λ
n
) → λEN, n →∞. Thus, due to continuity of

the Laplace transform, we conclude that

n∏

k=1

Hk(f(
λ

n
)) ∼

n∏

k=1

Hk(
λEN

n
)

and this together with (19) gives (17).
It follows from the above that, if condition (18) is satisfied, then Theorem

A holds, i. e. Z(n)/n
D→ W,n →∞. This can be written in terms of Laplace

transforms as Ee−λZ(n)/n → Ee−λW , n →∞. Now we appeal to Theorem 2.
If we choose k(n) = a(n) = n, then as n →∞

n(1−G(
λ

n
)) → λEW.
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Thus condition (1) is fulfilled with b(λ) = λEW . The assertion of Theorem
3 now follows from Theorem 2.

Example. Let the immigration process be stationary, i. e. {Uk, k ≥ 1}
have a common distribution and a = EUk is finite. Then, due to weak law
of large numbers, condition (18) is satisfied with ξ = aEN . Thus we obtain
from Theorem 3 the following result.

Corollary. If m = 1, B ∈ (0,∞) and immigration is stationary with a =
EUk < ∞, then Xn/n as n →∞ has a gamma limit distribution with density
function

1

Γ(2aE(N)
B

)

(
2

E(W )B

) 2aE(N)
B

x
2aE(N)

B
−1e−

2x
E(W )B .

In conclusion we note that Theorem 3 and its corollary answer ques-
tions concerning linear normalization and gamma limit distribution, stated
in the introduction. To investigate affect of the change of immigration rate
to asymptotic behavior of the process, one needs to consider cases of decreas-
ing and increasing immigration separately. In this study one still may use
Theorems 1 and 2 of this paper.
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