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ABSTRACT. In this paper, we consider vector equilibrium problems and prove the existence
of their solutions in the setting of Hausdorff topological vector spaces. We also derive some
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1. INTRODUCTION

Let X and Y be two topological vector spaces and K be a nonempty and
convex subset of X. Let f : K x K — Y with f(r,z) =0, V2 € K and
{C(z) : £ € K} be a family of closed, pointed and convex cones in Y with
apexes at the origin and with int C(z) # 0. Vr € K, where int C(z) denotes
the interior of the set C(x). We consider the problem of finding y € K, such
that: : :

‘ (11) f(y,l') ZintC(y) 0 . VreR,

" where the inequality means that f(y,z) ¢ int C(y). (1.1) is called Vector
Equilibrium Problem (for short, VEP). For further details, we refer to {1,
10-11, 13]. The following problems are special cases of (1.1).

1

F. Giannessi (ed.). Vector Variational Inequalities and Vector Equilibria, 1-15.
~ ©2000 Kluwer Academic Publishers. Printed in the Netherlands.



2 Q.H. Ansari

(i) Let T : K = L(X,Y), where L(X,Y) is the space of all continuous
linear operators from X to Y. Then the Vector Variational Inequality
(for short, VVI) introduced in [9] (see also [5-7, 15]) consists in finding
y € K, such that:

(12) (T(y),z - y) Zimcy) 0 , Vz €K,

where (T(y), z) denotes the evaluation of the linear operator T'(y) at
Z.
We set f(y,z) = (T(y),z — y). Then (1.2) & (1.1).

(ii) Let ¢ : K — Y. Then, the Vector Optimization Problem (for short,
VOP) [16] consists in finding y € K, such that:

(1-3) | &(z) — d(y) Zintcy) 0 , Vz e K.
At f(y,z) = ¢(z) — é(y), problem (1.3) coincides with (1.1).

(iii) Let f : K x K — R be a given function with f(z,z) = 0,Vz € K.
Then the Equilibrium Problem (for short, EP) [2, 3] consists in finding
y € K, such that:

(1.4) | fly,z) >0 , VzeK.

When Y = R and C(z) = R- (the negative orthant), Vz € K, then
y € K is a solution of (1.1) if and only if it is a solution of (1.4).

From the above examples, it is clear that our VEP (1.1) contains as special
cases, for instance, VVI, VOP and EP.

In the next section, we present some preliminaries which will be used
in rest of the paper. Sect.3 deals with the existence theorems for (1.1). In
Sect.4, we apply a result of Sect.3 to prove the existence of solutions to the
strongly nonlinear Variational Inequality (for short, VI) studied by Noor [12].
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2. PRELIMINARIES

We denote by convA, for all A C X, the convex hull of A. We need the
-following concepts and results.

Definition 1. Let K be a nonempty and convex subset of a topological
vector space X and Y be another topological vector space with a closed
and convex cone C, such that int C # 0. A mapping ¢ : K — Y is called
C-function, iff

glaz+ (1 - a)y) —ag(z) - (1 - a)gly) eC , Vz,y€ K, Va€)o, 1]

When C contains or is contained in the negative orthant (the positive or-
thant), then g is called C-convez (C—concave, respectively).

Remark 1. ¢ : K - Y is a C-function iff Vz; € K, for i = 1,...,n and
o; > 0, such that 3_1, a; = 1, we have:

a3 aiz) - Y oug(z:) € C.
i=1 i=1

Definition 2. A point-to-set map T : X =3Y is called upper semicontinuous
(for short, u.s.c.) at x € X, iff for any net {z,} in X such that zy = zin X
and for any net {y»} in Y with y\ € T(z,) such that y» — y in Y, we have
y € T(z). T is called us.c. on X, iff it is u.s.c. at each z € X.

Definition 3. A point-to-set map T : X =3 X is called K KM — map, iff for
every finite subset {z,,...,z,} of X, conv{z,,...,z,} C UL, T(z,).

Lemma 1 [8]. Let K be a nonempty and convex subset of a Hausdorff
topological vector space X. Let T : K =3 X be a KKM-map, such that
Vr € K, T(z) is closed and T'(z*) is contained in a compact set D C X
for some z* € K. Then 3y € D such that y € T(z) Vz € K.

Lemma 2. Let Y be a topological vector space with a closed, pointed and
convex cone C such that int C' # 0. Then Vz,y,z € Y, we have
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) z—y€eintCandz¢intC = y¢int C;
(ii) z+yeCandz+2¢intC = z-y¢int C;
(iii) z+z-y¢intCand ~yeC = z+2z¢int C;

(ivz+y¢itCandy—-2€ C = z+2¢int C.

Proof. (i) Lety€int Candz—y € int C. Thenz—y+y €int C+int C C
int C = z € int C, a contradiction of our assumption. (ii) Let z—y € int C
andz+y€C. Thenz—y+z+y€eintC+CCintC = z+z€intC,a
contradiction of our assumption. (iii) Let z + z € int C and —y € C. Then
wehave z+2z—y€int C+C Cint C = z+2—y € int C, a contradiction
of our assumption. Similarly, we can prove (iv). O

3. EXISTENCE RESULTS
We first prove the following existence theorem.

Theorem 1. Let K be a nonempty and convex subset of a Hausdorff topo-
logical vector space X, Y be a topological vector space, assume that:

1° C : K=Y is a point-to-set map such that Vz € K, C(z) is a closed,
pointed and convex cone with apex at the origin and with int C(z) # 0;

2° the point-to-set map W : K =Y, defined by W(z) := Y \ {int C(z)}
Vz € K, is upper semicontinuous on K;
- 3° f(-,z) is continuous, Vz € K;
4° there exists a function p: K x K — Y, such that:
(a) p(z,z) — f(2,2) € int C(2), Vz,z € K;
(b) the set {z € K : p(z,z) € int C(2)} is convex, Yz € K;
(c) p(z,z) ¢ int C(z), Vz € K

(d) there exists a nonempty, compact and convex subset D C K, such
that Vz € K\ D, 3% € D such that f(z,%) € int C(z).
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Then 3y € D C K, such that:

(3.1) f(y,2) iy 0, VzEK.
Proof. We define

G(z)={z€D: f(z,z) ¢int C(2)} , Vze€K.

We first prove that Vz € K, G(z) is closed. Let {2)} be a net in G(z) such
that 2y — z. Then z € D because D is compact. Since 2, € G(z), we have

flza,z) ¢ int C(2a) = f(za,z) € W(z) =Y\ {int C(2))}.

Since f(-, z) is continuous, we have f(z),z) — f(2,z). Because of the upper
semicontinuity of W we have that f(z,z) € W(2) = f(z,z) ¢ int C(2)
and hence G(z) is closed. Since every element y € N cx G(z) is a solution
of (3.1), we have to prove that N cx G(z) # 0. Since D is compact, it
is sufficient to show that the family {G(z)}.cx has the finite intersection
property. Let {z),...,zn} € K be a finite subset of K. We note that
A :=conv(DU {z,,...,Zn,}) is a compact and convex subset of K (see for
example [4]).
We now consider the point-to-set maps Fy, F; : K =3 A, defined by

Fi(z)={z€ A: f(z,z) ¢ int C(2)}
and
Fz)={2€ A:p(2,z)¢int C(2)} , VzeK.
From assumptions 4°(a) and 4°(c), we have
| p(z,z) — f(z,z) €int C(z) and p(z,z) ¢ int C(x).
Then by Lemma 2(i) we have:

f(z,z) ¢ int C(x)

and hence Fi(z) is nonempty. Fj(z) is compact, since it is a closed subset of
a compact set A. Now we will prove that F; is a KKM-map. Suppose that
there exists a finite subset {v;,...,v,} of A and o; > 0,i = 1,...,n, with
i1 o = 1, such that: :

=Y o ¢ | Falv));
i=1 ]

j=1
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then we have:
p(d,v;) €int C(3) , for1<j<n.

By assumption 4°(b), we have:
p(9,9) € int C(9),

which contradicts to assumption 4°(c). Hence F, is a KKM-map. From
assumption 4°(a) and Lemma 2(i), we have Fy(z) C Fi(z), Vz € K. Indeed,
let z € F5(x); then p(2,z) ¢ int C(z) and by assumption 4°(a), we have

p(2,z) — f(z,z) € int C(2).

By Lemma 2(i), we get:
flz,z) ¢ int C(2).

This implies that F; is also a8 KKM-map. By Lemma 1, 3y € A such that
y € Fi(z), V= € K. Hence

Jy € A such that f(y,z)¢int C(y) , VzeK.

By assumption 4°(d), we find that y € D and moreover y € G(z;), for every
1 < i < m. Hence {G(z)};ecx has the finite intersection property. O

Let K be nonempty and convex subset of a Hausdorff topological vector
space X, and Y be a topological vector space. Suppose that the bilinear form

(",-) is continuous. As a consequence of Theorem 1, we have the following
result.

Corollary 1 [14]. Assume that

1° C : K=Y is a point-to-set map such that Vz € K, C(z) is a closed,
pointed and convex cone with apex at the origin and with int C(z) # §;

2° the point-to-set map W : K 3Y defined as W(z) = Y \ {int C(z)},
¥z € K is upper semicontinuous on K;

3° T: K — L(X,Y) is continuous;
4° g: K — K is continuous;

5° there exists a function p: K x K = Y, such that
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(a) p(z,z) — (T(2),z — g(2)) € int C(2), Vz,z € K;
(b) the set {z € K : p(z,z) € int C(2)} is convex, Vz € K;
(c) p(z,z) ¢ int C(z), Vz € K;;

(d) there exists a nonempty, compact and convex subset D C K such
that Vz € K'\ D,3% € D, such that (T'(z),% — g{(z)) € int C(2).

. Then 3y € D C K such that:

(T(y)7$ - g(y)) ZintC(y) 0 s Vr e K
" The proof of this corollary follows by setting f(z,z) = (T'(z),z~9(2)), Vz,z €
K and using Theorem 1.

Let g,h: K x K — Y be two given functions such that:
g9(z,z) = h(z,z) =0 , VzeK.
We now prove the existence result for the VEP (1.1) in the case where

f(z,1) = g(z,z) + h(z,z).

Theorem 2. Let K be a nonempty and convex subset of a Hausdorff topo-
logical vector space X, and Y be a topological vector space. Assume that

1° C: K=Y is a point-to-set map, such that Vz € K, C(z) is a closed,
pointed and convex cone with apex at the origin and with int C(z) # 0,
and P := N,k C(z) such that int P # 0;

2° the point-to-set map W : K =Y defined by W(z) := Y \ {int C(z)},
Vz € K is upper semicontinuous on K;

3° the given function g : K x K — Y has the following properties:
(i) g(z,z) =0, Vz € K,

(i) g(z,z) + g(z,2) € (C(2)NC(z)), Vz,z € K,

(iii) g(:,-) is continuous in the second argument and Vz,z € K, the
function ¢ : {0, 1] = g(tz + (1 — t)2, z) is upper semicontinuous at
t = 0 (hemicontinuity),
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(iv) g(=,-) is P-function, Vz € K;
4° the given function h: K x K — Y has the following properties:

(i) h(z,z) =0, Vz € K,
(ii) h(-,z) is continuous, Vz € K,
(iii) h(z,-) is P-function, Vz € K;

5° there exists a nonempty, compact and convex subset D C K, such that
Vz € K\ D, 3% € D such that

9(2, Z) + h(z,%) € int C(2).
Then, Jy € D C K such that:

9y, z) + h(y,2) Zimcyy 0 , VzeK.

For the proof of above theorem we need the following two lemmas, for which
the hypotheses remain the same as for Theorem 2.

Lemma 3. There exists y € D, such that:
h(y,z) — g(z,y) ¢int C(y) , VreK.
Proof. Conéider the set
Gz)={z€ D:h(z,z) — g(z,2) ¢int C(2)} , VreK.

Then Vz € K, G(z) is closed. Indeed, let {z)} be a net in G(z) such that
2y — z. Then z € D because D is compact and

h(2x,z) — g(z,2)) € int C(zy) , VA
= h(z\,z) —g(z,22) € W(22) =Y \ {int C(2))}.

Since h(-,z) and g(z,-) are continuous, we have:
h(Z;,ZL‘) - g(za Z)‘) - h(z’ $) - g(.’L’, Z)-

The upper semicontinuity of point-to-set map W implies that h(z,z) —
g(z,2) € W(z) and hence h(z,z) — g(z,2) ¢ int C(z). Hence z € G(z)
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and thus G(z) is closed. Now, we will prove that G is a KKM-Map. Let
{z1,...,2,} be a finite subset of D and a; > 0,i = 1,...,n, such that
Yo = 1. Assume that

=Y wnd () 6l).

i=1
_ Then
(3.2) h(z,2;) — g(z,2) €int C(2) , Vj=1,---,n
From the assumption 3°(ii), we have:
(33) 9(z3,5) + 9(5, 3) € C(3).
By adding (3.2) and (3.3), we obtain:
h(2,2;) + g(2,2;) €eint C(3) +C(2) Cint C(2) , Vj.

Since C(2) is the convex cone, we have:

(3:4) Otjh(é, Zj) + E a,-g(i, Zj) € int C(2).
j=1 Jj=1

Since h(Z,-) and g(2,:) are P-function, we have h(Z,-) + g(2,-) is also P-
function and hence

(3.5) h(z,2) - zn: ojh(z, z;) + g(2,2) - i a;g(z,2;) € P.

et F
From (3.4) and (3.5), we have:
h{(2,2) + g(2,2) € int C(2) +int P C int C(3),

a contradiction with g(2,2) = 0 and h(2,2) = 0. Hence G is a KKM-map.
Since G(z) is contained in a compact set D, by Lemma 1, 3y € D such that
y € G(z), Vz € K. Hence 3y € D such that:

h(y,z) ~ g(z,y) ¢int C(y) , VzeK. O

Lemma 4. The following statements are equivalent:
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(1) ye D : h(y,z)-g(z,y) ¢int Cly) , Vze K.
(2) yeD : h(y,z)+g(y,z)¢int Cly) , VreK.

Proof. Let (2) hold. Then

veD : hy,z)+9(y,z)¢int C(y) , VreK.
From assumption 3°(ii), we have

9(y,z) + g9(z,y) € (C(y) N C(z)) C C(y).
Then by Lemma 2(ii), we find: '
y € D such that h(y,z) - g(z,y) ¢int C(y) , VzeK.

Conversely, let (1) hold, then

y€D : h(y,z) - g(z,y) ¢int C(y) , VzeK.

Lety, =tz + (1 - t)y € K, 0 <t <1 and since C(y) is the convex cone, we
have ‘

(3.6)  to(ye.z) — (1 - )g(ve,y) — tg(ms, 2) + (1 - t)h(y, ) ¢ int C(y).
Since g(y., ) is the P-function, we find

9(e, ) — tg(ye, ) — (1 — t)g (e, y) € P.
Since gy, 1) = 0’ then we see that

3.7) —tg(y,z) — (1 - t)g(y,y) € P = [] C(2) C C(y).
2K

By (3.6) and (3.7), and Lemma 2(iii), we have:

(3.8) - tg(ye2) + (1 - )h(y, w) ¢ int C(y).

Since h(y, -) is P-function and h(y,y) = 0, we have
h(y ye) — th(y,z) € P = [} C(2) C C(y).

Z2€EK
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Since C(y) is the convex cone, we have:
(3.9) (1 - h(y, y) - t(1 - h{y, z) € C(y).
From (3.8), (3.9) and Lemma 2(iv), we have:

tg(ye, z) + t(1 — t)h(y, ) ¢.int C(y)-

- Dividing by t, we get

9(ye, z) + (1 — t)h(y, z) ¢ int C(y)

-

and therefore
9(we, z) + (1 - t)h(y, z) € W(y).

Letting ¢ >, 0 and thereby y, — y. Since W(y) is closed and g is hemicon-
tinuous in the first argument, we have

9(y,z) + h(y,z) € W(y)
~ and therefore

9(y, ) + h(y, ) ¢ int C(y). a

Proof of Theorem 2. Let {z;,...,z,} be a finite subset of K and B =
conv(D\ {z,,...,z4}). Then B is a compact and convex subset of K. Then
by Lemma 3, 37 € B such that

h(g,z) - g(z,§) ¢ int C(y) , VzeK,
in particular, |
My, zi) - g(zi, ) ¢ it C(g) , Yi=1,...,n.
So every finite subfamily of the family of closed sets
. H(z)={2€ B:h{z,z) —g(z,2) ¢int C(2)} , VzeK

has nonempty intersection and since B is compact, ;ecx H(z) # 0. From
~ Lemma 4, we obtain N,cx G(z) # 0. Hence 3y € B such that

hMy,z) +g(y,z) ¢int Cy) , VzreK.

11
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From assumption 5°, we have y € D such that:

h{y,z) + g(y,z) ¢int Cly) , VzeK

and the proof is completed. 0O

4. STRONGLY NONLINEAR VECTOR VARIATIONAL
INEQUALITIES

Let X be a Hausdorff topological vector space and Y be a topological
vector space. Let K be a nonempty subset of X and {C(z) : z € K} be a
family of closed, pointed and convex cones in Y with apexes at the origin
and with int C(z) # 0, Vz € K. Then we consider the problem of finding
y € K such that:

(4.1) T(y),z—y) - (A[W),z — ¥) incy) 0 , VT EK.

where T,A : K — L(X,Y) are nonlinear operators. (4.1) shall be called
Strongly Nonlinear Vector Variational Inequality (for short, SNVVI).

IfY = Rand C(z) = R_,Vz € X, then the SNVVI becomes the problem
of finding y € K, such that:

(4.2) , (T@),z-y) 2 (Aly)z—y) , VZ €K,

where T, A : K — X* (the topological dual of X) are nonlinear operators.
(4.2) is called Strongly Nonlinear Variational Inequality (for short, SNVI). It
has been introduced and studied by Noor {12] in the setting of Hilbert spaces.

Definition 4. A map T : K — L(X,Y) is said to be C — operator, iff
(T(z) = T(2),z—2) € (C(z)NC(z)) , Vz,z€K.

When C contains or is contained in the positive orthant, then T is called
C-monotone.

‘Now we present an application of Theorem 3. The bilinear. form (,-) is
supposed to be continuous. 1,
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Theorem 3. Let K be a nonempty and convex subset of a Hausdorff topo-
logical vector space X, and let Y be a topological vector space. Assume
that

1PC:K=Y isa point-to-set map such that Vz € K, C(z) is a closed,
pointed and convex cone with apex at the origin and with int C(z) # 0,
and P := N,k C(z) such that int P # 0;

2° the point-to-set map W : K 1Y defined as W(z) = Y \ {int C(z)},
Yz € K is upper semicontinuous on K

3° T: K — L(X,Y) is C-operator and hemicontinuous;
4° A: K — L(X,Y) is continuous on K;

59 there exists a nonempty, compact and convex subset D C K, such that
Yz € K\ D, 3% € D such that:

(T(2),% - 2) — {A(2), 3 — 2) € int C(2).

Then, 3y € D C K such that:

(T(y),z —y) — (A(y),z — y) Zimcy 0 ., V€K

Proof. Let g(z,z) = (T(z),z — z) and h(z,z) = —(A(z),z — z). Since

h(z,z) = —(A(z),z — 2) is affine in the second argument, it follows that
h(z,-) is P-function. Then, all the assumptions of Theoerm 2 are satisfied.
0

IfY = R and C(z) = R_,Vz € K, then Theorem 3 reduces to the

following result.

Corollary 2. Let K be a nonempty and convex subset of a Hausdorft topo-
logical vector space X, and Y be a topological vector space. Assume that

1° T : K — X* is monotone and hemicontinuous;

2% A: K — X* is continuous on K;
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3¢ there exists a nonempty, compact and convex subset D C K, such that:
Vz € K\ D, 3% € D such that;

(T(2),z — 2) < {A(2),% — 2).
Then, 3y € D C K such that:

(T(y),z-y) > (Aly),z—y) , VreK.
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