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1. Introduction

In 1950, Nash [11] (see, also [12]) introduced the concept of equilibrium point in
n-person games. Debreu [6] extended this concept of Nash equilibrium point for
n-person games to constrained equilibrium problems. In the last three decades
two problems, n-person games and n-person games with constrained were exten-
sively studied in the literature; See, for example, [1, 2] and references therein. In
the recent past, much attention has been paid on the game theory with vector
payoff; See, for example, [3, 4, 9, 14, 15, 16, 18, 19, 20] and references therein.
The existence of Pareto equilibria is one of the fundamental problem in game
theory.

Wang [16] introduced the concept of a weighted Nash equilibrium of a mul-
tiobjective game and proved that any normalized weighted Nash equilibrium is
a weak Pareto equilibrium of a multiobjective game. He also formulated the
weighted Nash equilibrium in terms of fixed points of a multivalued map. Wang
[16], Yu and Yuan [18], and Yuan and Tarafdar [19] used this formulation to
prove the existence of weighted Nash equilibrium and Pareto equilibrium of a
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multiobjective game by using some fixed point and minimax theorems. Recently,
Ding [8] studied the multiobjective games with constrained correspondences. He
proved the existence of weighted Nash equilibrium and Pareto equilibrium for
the constrained multiobjective games in the setting of H-spaces.

In this paper, we establish some existence results of weighted Nash equi-
librium and Pareto equilibrium for the constrained multiobjective games with
or without involving ®-condensing maps. * Our results improve and unify the
corresponding results of the multiobjective games in the literature.

2. Preliminaries

Throughout the paper, we follow the terminology of Ding [8] and, Yu and Yuan
[18]. For each given m € N, we denote by R the non-negative orthant of R™,
that is, ‘

R = {u=(u1,...,un) ER™: u; >0for j=1,...,m},

so that R has a nonempty interior with the topology induced in terms of
convergence of vectors with respect to the Euclidean metric. That is,

int R? ={u = (ug,...,um) €ER™: u; >0forj=1,...,m}.

We denote by T7* and int T the simplex of R7 and its relative interior, respec-
tively, that is,

m
TP = du=(u1,...,um) ERT: Y uj=17p,
j=1

. m
int T = u=(u1,...,um)Eint]R’f:Zw:l
‘ o

- Let I be a finite index set, that is, 7 = {1,...,n} and for each.i € I, p; a
positive integer. For each ¢ € I, let X' be a nonempty subset of a topological
vector space B, X = [[,c; X* and X* = [1jer jwi X7 Foreachz € X, 2" € X*
denotes the ith coordinate, z* = (z!,..., 2"~ 1,2+, ... 2") € X and we write
z = (z, ).

We consider a constrained game with finite players and multicriteria in its
'strateglc form T := (X, A%, F%);cs. For each player i € I, X" is its strategy set; -
At : Xt - 2%" is its constrained correspondence which restricts the strategies
of the ith player to the subset A*(x') C' X when all the players have chosen
their strategies 2/ € X7, j # 4, and F* = (f}, f3,..., f3) + X — RPi is its
payoff function (or say, loss function or multicriteria). In such a constrained
~multiobjective game, the other players influence player j € I
(a) indirectly, by restricting js feasible strategies to Al (:cj),

(b) direct, by affecting js payoff function FJ.
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If a choice = = (z!,...,2") € X is played, each player i is trying to minimize
her/his payoff function F*(z) = (fi(z), fi(z),. .., f;,(x)), which consists of non-
commensurable outcomes. Each player 7 has a preference ’=; over the outcome
space RP:. For each player ¢ € I, its preference »=; is given as follows:

2t 2% ifandonlyif 2 > ij',

for each j = 1,...,p;, where 2' = (21,...,2},) and 22 = (2f,...,22,) are any

elements of RP:. The players’ preference relations induce the preferences on X,
defined for each player i and choose z = (z!,...,2") and y = (y',...,y") € X
by = % y, whenever F'(z) %; F'(y). In the constrained multiobjective game,
each player ¢ € I is trying to minimize her/his own payofl according to her/his
preferences.

If Ai(z') = X°® for each i € I and for all z* € X*, then the model of
constrained multiobjective games reduced to the model of multicriteria games
G = (X', F%);cr considered and studied by Wang [15, 16], Ding [7], Yuan and
Tarafdar [19] and Yu and Yuan [18] and references therein. If for each player
i € I, Fi(z) = fi(z), that is, p; = 1, which consists of commensurable out-
comes, then the model of the constrained multiobjective games reduces to the
model of the constrained games (or say, metagames); see, for example, [1, 2] and
references therein.

For the games with vector payoff functions (or multicriteria), as it is well
known, in general, there does not exist a strategy Z € X to minimize {(or equiva-
lent to say, maximize) all f}s for each player 7 € I; See, for example [17]. Hence,
we need to recall some solution concepts for the constrained multicriteria games.

Definition 2.1. (8] A strategy 3 € X' of player i is called a Pareto efficient
stmtegy (respectwely, a weak Pareto eﬁiczent strategy) with respect to T € X if,
Zt € AYZ') and there is no strategy yA € A(z") such that Fi(Z", m’) Fi(zt,y) €
RE:\ {0} (respectively, F*(Z) — F*(&,y*) € int RY').

Definition 2.2. [8] A strategy combination T € X is called a Pareto equilibrium
(respectively, a weak Pareto equilibrium) of the constrained multiobjective game
T = (X%, A%, F)c1 if, for each playeri, * € AY(%*) is a Pareto efficient strategy
(respectively, a weak Pareto efficient strategy) with respect to Z.

It is clear that each Pareto equilibrium is certainly a weak Pareto equilibrium,
but the converse need not be true. We need the following concept which is
introduced by Ding [8]. T

Definition 2.3. A strategy combination T € X is called a weighted Nash equilib-
rium with weight combination W = (WL, W?2,...,W") of a constrained multi-
objective game T' = (X*, A, F*);cr if, for each player i € I, we have that
() 7 € Ai(F);
(i) W* € RE\ {0};
(iii) Wi Fi(&,2') < Wi- Fi(a,y'), for all y € A(Z),
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where - denotes the inner product in RP¢. In particular, when Wt e T%, for all
i € I, the strategy T € X is called a normalized weighted Nash equilibrium with
respect to W.

From the above definition, it is easy to verify that a strategy Z € X is a
weighted Nash equilibrium with respect to the weight vector W = (WL,we,...,
W™) of the constrained multiobjective game I' = (X i A FY)ifandonly if & € X
is an optimal solution of the following constrained optimization problem:
(COP) Find & € X such that for each i € [,7° € Ai(F) and Wi - Fi(2*,3') =

minyieAi(a—ci) Wi . Fi(jivyi)-

We need the following lemma of Ding [8] which tells us that the existence
problems of Pareto equilibrium for constrained multiobjective games can be
reduced to the existence of the weighted Nash equilibrium under certain circum-
stances.

‘Lemma 2.4. [8] Fach normalized weighted Nash equilibrium T € X with re-
spect to a weight vector W = (WLw2,..., W™ € T’j} X oo X ']I"j_" (respectively,
W= (WL W2 ... W")€int T x -« x int Tk for a constrained multiobjec-
tive game T = (X%, A?, F*) is a weak Pareto equilibrium (respectively, a Pareto
equilibrium) of the game T'.

Let B be nonempty subset of a topological vector space Z, then we denote
by co(B) the convex hull of B. A subset B of a topological space E is said to
be compactly open (respectively, compactly closed) in F if, for any nonempty
compact subset D of E, BN D is open (respectively, closed) in D.

Definition 2.5. [13] Let E be a Hausdorff topological vector space and L a lattice

with least element, denoted by 0. A mapping @ : 28 5 L is called a measure of

noncompactness provided that the following conditions hold for any M,N € 2F:
(i) ®(M) = 0 if and only if M is precompact, i.e. it is relatively compact.
(i) ®(coM) = ®(M), where WM denotes the closed convex hull of M.

(ii)) ®(M U N) = max{®(M),&(N)}.

It follows from (iii) that if M C N, then ®(M) < ®(N).

Definition 2.6. [13] Let ® : 2 — L be a measure of noncompactness on E and
D C E. A multivalued map Q : D — 2F s called ®-condensing provided that if
M C D with ®(Q(M)) > &(M) then M is relatively compact.

Remark 2.7. Note that every multivalued map defined on a compact set is nec-
essarily ®-condensing. If E is locally convex, then a compact multivalued map
(i.e., Q(D) is precompact) is ®-condensing for any measure of noncompactness
®. Obviously, if Q : D — 2F is ®-condensing and if @' : D — 2F satisfies
Q'(x) C Q(x) for all z € D, then Q' is also ®-condensing.

We shall use the following particular form of a fixed point theorem due to
Chowdhury and Tan [5].
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Theorem 2.8. Let K be a nonempty convex subset of a topological vector space
(not necessarily, Hausdorff) E and S : K — 2% o multivalued map. Assume
that the following conditions hold:

(i) For allz € K, S(z) is nonempty and convex.

(ii) Forallye K, S~ (y)={z € K :y € S(x)} is comapctly open.

(iif) There exist a nonempty, closed and compact (not necessarily convex) subset

D of K and a § € D such that K\ D C S71(%).

Then there exists & € K such that T € S(T).

Remark 2.9. If K is a nonempty closed convex subset of a Hausdorff topological
vector space X, then the condition (iii) of Theorem 2.8 can be replaced by the
following condition (see, for example, [10, Corollary 2]).

(iif)’ The multivalued map S : K — 2K is ®-condensing.

3. Existence of Weighted Nash Equilibrium and Pareto Equilibrium

Rest of the paper, unless otherwise specified, we assume that X = L X ¢ with
the product topology.

Theorem 3.1. Let T' = (X*, A*, F*) be a constrained multiobjective game, where
for each playeri € I, X' is a nonempty, closed and convex subset of a Hausdorff
topological vector space E*, A* : X' — 2X" s the constrained correspondence,
and F* = (f{,fi,..., f},) : X — RP is the payoff function. Assume that there
exists a weight vector W = (W, W2, ... . W") with W* € R?: \ {0}, for each
i € I, such that the following conditions are satisfied:

(i) For'eachi € I, A*: X* — 2X" is a multivalued map with nonempty and
convezx values and for each y* € X*, (A*)~1(y') is compactly open in X.
Further, we assume that the set D = {x € X : z € A(z)} is compactly
closed in X, where A : X — 2% s ®-condensing multivalued map defined

- a8 A(@) = [Lier Ai(z) forallz € X.

(i) The function (z,y) — 3, W*- Fi(zt,y*) is jointly lower semicontinuous
on each compact subset of X x X.

(iii) For each fived y € X, the mapping  — Y ,c; W' - Fi(zi,yt) is upper
semicontinuous on each compact subset of X.
(iv) For each fized x € X, the mappingy — Y ,o; W* Fi(z*,y") is quasi-convex
on X. )
Then the constrained multiobjective game T’ has a weighted Nash equilibrium
with the weight combination W and hence it has a weak Pareto equilibrium.
Furthermore, if for alli € I, W € int T%, then T has a Pareto equilibrium.

Proof. For the sake of simplicity, we define a bifunction F : X x X — R by

F(z,y) ZWz Fi( x ,zt) — F’(ac ,y)] for all z,y € X.
el
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For each @ € X, define a multivalued map P: X — 2X by
o " P()={y€ X : Flz,y) > 0}.

Then by condition (iv), P(z) is convex for all z € X. From condition (ii) and
(iii), for all y € X, the complement of P~lYy)in X :

Ply)={z e X : F(z,y) < 0}

is compactly closed in X and therefore [P~1(y)]° is compactly open in X.
Since for each i € I and for all z € X, Ai(x%) is nonempty and convex, we
have A(z) = [Tig; A"(wg) is nonempty and convex. Also since for all y € X,
A W) =i (A H(y*) and (A~ (yf) is compactly open for each ¢ € 1 and
for all ¥ € X?, it follows that A~(y) is compactly open in X for all y € X.
Now assume that for all z € D, A(z) N P(z) # 0. Define another multivalued
map S: X — 2X by

. [A@)nP@) if z€D,
5<w>={AEx§ @ if ze K\D.

" Then S has nonempty and convex values and by [8, Lemma 3.2], S7l(y) is
compactly open in X for all y € X. Since S(z) C A(x), for all z € K and
A is ®-condensing, by Remark 2.7 we have, S is also ®-condensing. Hence by
Theorem 2.8 along with Remark 2.9, there exists & € X such that & € S(2).
From the definition of D and S, we have {z € X : z € S(z)} € D. Therefore,
4 €D and & € A(%) N P(&) and, in particular, we get

0=F(2,a) =3 W [Fi(#, &) - Fi(3',8)] >0,
i€l
a contradiction. Hence there exists & € D such that A(z) N P(z) = 0, that is,
z e AF) and F(3,y) = Lt W* [F"(a‘ci,a‘:i) — Fi(z*,y")] <0 for all y € AZ).
For each i € I and for any given y* € ANF), let y = (#,y"), then we have
y € A(Z) and it follows from last inequality that

Wi. P (@, 5) < W Fi(3',y') forall y € AEY).
This proves that for each i € I, 7 € A¥(z*) and W*-F? (#,7") = mini 45 wt.
Fi(z,y"), that is, Z € X is a weighted Nash equilibrium point for the constrained
multiobjective game I' with respect to weight vector W.

~ Lemma 2.4 shows that Z is also a weak Pareto equilibrium of T, and Pareto
equilibrium point of T if W* € int T’ for all i € I ]

Corollary 3.2. LetT' = (X i Al F) be a constrained multiobjective game, where
for each player i € I, X* is a nonempty, closed and convez subset of a locally
conver Hausdorff topological vector space E¥, A*: X i s 2X° is the constrained
correspondence, and F* = (fi,f3,..-, fi) s X — RP s the payoff function.
Assume that there exists a weight vector W = (WL, W2,...,W") with W* €
RP: \ {0}, for each i € I, such that the following conditions are satisfied:
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(i) For eachi € I, A*: X i 5 92X is o multivalued map with nonempty and
convez values and for each y* € X¢, (A)"Y(y") is compactly open in X.
Further, we assume that the set D = {z € X : « € A(z)} is compactly
closed in X, where A: X — 2X is a compact multivalued map defined as
A(z) =[Lie; A'(2*) for allz € X.

(ii) The function (z,y) — 3 ;e; W' Fi(a*,y") is jointly lower semicontinuous
on each compact subset of X x X.

(iii) For each fited y € X, the mapping @ — Y ;o W' - F'(z',y") is upper
semicontinuous on each compact subset of X.

(iv) For each fized x € X, the mappingy — Y_;c; W Fi(z*,y*) is quasi-convez
on X.

Then the constrained multiobjective game T' has a weighted Nash equilibrium

with the weight combination W and hence it has a weak Pareto equilibrium.

Furthermore, if for all i € I, W* € int ']I”_’;', then I has a Pareto equilibrium.

Proof. Since for each i € I, E is locally convex and A : X — 2% is a compact
multivalued map, by Remark 2.7 A is ®-condensing map and the conclusion
follows from Theorem 3.1. =

For each i € I and for all z € X?, if A(z*) = X* then we have the follow-
ing existence results of weighted Nash equilibrium and Pareto equilibrium for
multiobjective games. '

Corollary 3.3. Let G = (X*?, F*) be a multiobjective game, where for each player
ie I, X is a nonempty compact convez subset of a Hausdorff topological vector
space B¢ and F* = (fi, fi,..., f},) + X — RP is the payoff function. Assume
that there ezists a weight vector W = (W, W2, ..., W") with W* € R+ \ {0},
for each i € I, such that the following conditions are satisfied:
(i) The function (x,y) = 3 ;c W' Fi(z*,y") is jointly lower semicontinuous
on each compact subset of X x X.
(ii) For each fized y € X, the mapping ¢ — Y ;c; W' F*(z*,¢') is upper
semicontinuous on each compact subset of X.
(iii) For each fized x € X, the mapping y — Y ;c; W'-F'(z*, y') is quasi-convez
on X.
Then the multiobjective game G has a weighted Nash equilibrium with the weight
combination W and hence it has a weak Pareto equilibrium. Furthermore, if for
allie I, Wi eint T%, then G has a Pareto equilibrium.

Proof. For each i € I and for all 7 € X*, let A*(z*) = X*. Since for each i € I,
X' is compact, the multivalued map A : X — 2X defined as A(z) = [];c; A%(2")
for all z € X, is ®-condensing. Then the conclusion follows from Theorem 3.1.

n

Corollary 3.4. Let G = (X, F%);cr be a given multiobjective game. For each
i€ I, let X* be a nonempty and convez subset of a Hausdorff topological vector
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space Ei. If there is a weight vector W = (W', W2,... , W™) with W* € RE\{0},
for each i-€ I, such that the following conditions are satisfied:
(i) The function (z,y) — > ;cf W*- Fi(zh,y) is jointly lower semicontinuous
on each compact subset of X x X.

(i) For each fized y € X, the mapping & — Y ;e  W* - Fi(z,y") is upper
semicontinuous on each compact subset of X.

(iii) For each fizedz € X, Y ;e W*- Fi(at,yt) is quasi-convez on X.

(iv) There ezists a nonempty, compact and convex subset D* of X* such that
for each © € X \ D, there exists §* € D' such that W* - [F"(x%,xi)) -
Fi(a,§)] >0, where D = [[;¢; D' € X.

Then the multiobjective game G has a weighted Nash equilibrium with the weight

co‘_mbination.W and hence it has a weak Pareto equilibrium. Furthermore, if for
allie I, Wt €int T, then the game G has a Pareto equilibrium.

Proof. For each i € I, let {yi,...,yi} be a finite subset of X*. Let C* =
co(D'U{yt,...,y.}). Then for each ¢ € I, C* is nonempty, compact and convex.
Then by Corollary 3.3, there exists Z € C' = [];¢; C' such that for each i € I,

wt. [Fi(a'zz,ii) - F"(a“si,y")] <0 for all y* € C%.
From condition (iv), Z € D. In particular, Z € D such that for each ¢ € I,
| Wi [Fi(a', &) — Fi(z',yL)] <O for all k.
For éach i € I and for all y* € X*, we now define
Q) = {z e D: W' [Fi(a},a*) - Fi(a%,y")] < 0}.

From conditions (i) and (i), Q(y*) is closed for all y* € X*. Hence every finite
subfamily of closed sets Q(y;) has nonempty intersection. Since D is compact,
for each i € I, (), cp: Q¥:) # 0. And the result is proved. n

Remark 8.5. For each ¢ € I, if E' is a reflexive Banach space equipped with
the weak topology, the assumption (iv) in Corollary 3.4 can be replaced by the
following condition.

(iv)" There exists an r > 0 such that for all z € X, ||z|| > r, there exists
% € X%, ||#ls < r such that Wi [F*(z", z) ~ Fi(z*,§")] > 0, where || ||;
and || - || denote the norms on RP: and [];_, R, respectively. _

Proof. Define B} = {z; € X * |||l < r}. Then B is a nonempty, compact and

convex subset of X*. By taking D* = B in Corollary 3.4, we get the conclusion.

) n

For each i € I, when X' is not necessarily Hausdorff and the multivalued
map A : X — 2% defined by A(z) = [[,; A*(2*) for all x € X is not necessarily
®-condensing, we have the following results.

¢ 5
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Theorem 3.6. Let I' = (X i A* F%) be a constrained multiobjective game, where
for each player i € I, X' is -a nonempty convexr subset of a topological vector
space (not necessarily, Hausdorff) E*, At . Xt — 2X° s the constrained corre-
spondence, and F* = (fi, fi, ..., f3,) + X — RP* is the payoff function. Assume
that there ezists a weight vector W = (WY, W2, ..., W™) with Wi e RP: \ {0},
for each i € I, such that the ]followz'ng conditions are satisfied:

(i) For eachi € I, Al X' — 2X° is a multivalued rrjap with nonempty and
convez values and for each yt € X*, (A)"1(y") is compactly open in X.
Further, we assume that the set D = {z € X : z € A(z)} is compactly
closed in X, where A(z) = [1;e; A*(z*) for allz € X.

(i) The function (z,y) — 2 i1 Wt Fi(z®,y*) is jointly lower semicontinuous
on each compact subset of X x X.
(i) For each fized y € X, the mapping = — it W Fi(ai,y") is upper
semicontinuous on each compact subset of X.
(iv) For each fized x € X, the mapping y — it WHF i(z,yt) is quasi-convex
on X.
(v) For each i € I, there ezist a nonempty compact (not necessarily, convex)

subset D' of X? and §° € D' such that for allz € X\ D, §* € A¥(z*) and
Wi . [Fi(z)) — Fi(a*, §)] > 0, where D = Lie: DPC X,
Then the constrained multiobjective game I' has a weighted Nash equilibrium
with the weight combination W and hence it has a weak Pareto equslibrium.
Furthermore, if for all i € I, Wt € int T, then T has a Pareto equilibrium.

Proof. Tt is easy to see that the condition (v) implies condition (iii) of Theo-
rem 2.8, and the result follows from the proof of Theorem 3.1.by using Theo-
rem 2.8. . ]

Corollary 3.7. Let G = (Xt F*) be a multiobjective game, where for each player

i€ I, X' is a nonempty convez subset of a topological vector space (not neces-

sarily, Hausdorff) E* and F* = (f}, f3,. .., ££) 2 X — RP s the payoff func-

tion. Assume that there exists a weight vector W = (WY, wW2,...,W") with

Wi € RPi \ {0}, for each i € I, such that the following conditions are satisfied:

(i) The function (z,y) — ;e W' - Fi(z?, o) is jointly lower semicontinuous
on each compact subset of X x X.

(ii) For each fized y € X, the mapping = — Sicr Wi Fi(a',y') s upper
semicontinuous on each compact subset of X. A ~

(i) For each fized x € X, the mapping y — it WHFiH(a*, y') is quasi-convex
on X. -

(iv) For each i € I, there exist a nonempty compact (not necessarily, convez)
subset D' of Xt and §* € D* such that for allz € X\ D, Wi [Fi(z)) -
Fi(z*,§%)] > 0, where D = [;¢; DiC X.

Then the multiobjective game G has a weighted Nash equilibrium with the weight

combination W and hence it has a weak Pareto equilibrium. Furthermore, if for
allie I, Wieint ’JI"_’;', then G has a Pareto equilibrium.
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Proof. For each i € I and for all ¢ € X, let Ai(z?) € X', then we get the
conclusion from Theorem 3.6. ]

Remark 3.8. Corollaries 3.3, 3.4 and 3.7 generalize Theorems 3 and 4 in (18] in
several ways. '
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