Southeast Asian Bulletin of Mathematics
© Springer-Verlag 2002

Fixed Point Theorems for Non-convex Valued Multifunctions

Oamrul Hasan Ansari*

Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India

AMS Subject Classification (2000): 47H, 54H

Abstract. The purpose of this paper is to establish fixed point theorems for non-convex valued multifunctions which generalize known results in the literature. We also derive coincidence theorems in the non-compact setting.

Keywords: Fixed point theorems, coincidence theorems, Hausdorff topological vector spaces

1. Introduction and Preliminaries

We shall use the following notation and definitions. Let A be a non-empty set. We shall denote by 2^A the family of all subsets of A. If A is a non-empty subset of a topological vector space X, we shall denote by $int_X(A)$ and co(A) the interior of A in X and the convex hull of A, respectively. Let X and Y be two topological vector spaces and let $F: X \to 2^Y$ be a multifunction. The *inverse* of F, denoted by F^{-1} , is the multifunction from $\mathcal{R}(F)$, the range of F, to X defined by

$$x \in F^{-1}(y)$$
 if and only if $y \in F(x)$.

In 1968, Browder [3] proved the following fixed point theorem.

Theorem A. [3, Theorem 2, p. 285] Let K be a non-empty compact convex subset of a Hausdorff topological vector space X, and let $S: K \to 2^K$ be a multifunction such that

- (a) for each $x \in K$, S(x) is non-empty and convex,
- (b) for each $y \in K$, $S^{-1}(y)$ is open in K.

Then T has a fixed point, that is, there exists $x_0 \in K$ such that $x_0 \in T(x_0)$.

^{*}Present address: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan. E-mail: ansari@math.nsysu.edu.tw

Because of the applications in nonlinear analysis, variational inequalities, optimization, operations research and economics, Theorem A has been generalized in many different directions, see for example [1–10]. First in 1977, Tarafdar [7] improved Theorem A by weakening assumption (b). Then in 1987, he generalized his result for non-compact setting. The following fixed point theorem generalizes Theorem A, Theorem 1 in [7], Corollary 3 in [9] and Theorem 3.3 in [10].

Theorem B. [1, 6] Let K be a non-empty compact convex subset of a Hausdorff topological vector space X, and let $S, T : K \to 2^K$ be two multifunctions. Assume that

- (a) for each $x \in K$, $co(S(x)) \subseteq T(x)$ and S(x) is non-empty,
- (b) $K = \bigcup \{ int_K S^{-1}(y) : y \in K \}.$

Then T has a fixed point, that is, there exists $x_0 \in K$ such that $x_0 \in T(x_0)$.

The main motivation of this paper is to generalize a result of Tarafdar [8] for non-convex valued multifunctions and Theorem B for non-compact setting. We also derive coincidence theorems in the non-compact setting.

2. Fixed Point Theorems

In this section, we prove the following fixed point theorem which improves a result of Tarafdar [8] and Theorems A and B.

Theorem 2.1. Let K be a non-empty convex subset of a Hausdorff topological vector space X, and let $S, T : K \to 2^K$ be two multifunctions. Assume that

- (a) for each $x \in K$, $co(S(x)) \subseteq T(x)$ and S(x) is non-empty,
- (b) $K = \bigcup \{ int_K S^{-1}(y) : y \in K \},$
- (c) there exists a non-empty subset B_0 of K such that B_0 is contained in a compact convex subset B_1 of K and the set $\mathfrak{D} = \bigcap \{K \setminus int_K \ S^{-1}(y) : y \in B_0\}$ is either empty or compact.

Then there exists $x_0 \in K$ such that $x_0 \in T(x_0)$.

Proof. We first assume that $\mathfrak{D} = \emptyset$ and define a multifunction $G: B_1 \to 2^{B_1}$ as $G(x) = S(x) \cap B_1$, for all $x \in B_1$.

For each $x \in B_1$, G(x) is non-empty. Indeed, suppose that G(x) is empty for some $x \in B_1$. Then $S(\tilde{x}) \cap B_1 = \emptyset$ for some $\tilde{x} \in B_1$. Hence for all $\bar{x} \in B_1$, $\bar{x} \notin S(\tilde{x})$ and therefore $\tilde{x} \notin S^{-1}(\bar{x}) \supseteq int_K S^{-1}(\bar{x})$. This implies that $\tilde{x} \in K \setminus int_K S^{-1}(\bar{x})$ for all $\bar{x} \in B_1$ and hence $\tilde{x} \in \bigcap_{\bar{x} \in B_1} \{K \setminus int_K S^{-1}(\bar{x})\}$. Therefore \mathfrak{D} is non-empty, a contradiction of our assumption. Moreover, we have

- (a₁) For all $x \in B_1$, $co(G(x)) = co(S(x) \cap B_1) \subseteq (co(S(x)) \cap co(B_1)) \subseteq (T(x) \cap B_1) \subseteq T(x)$ and hence $co(G(x)) \subseteq T(x)$ for all $x \in B_1$.
- (b₁) Since $\mathfrak{D} = \bigcap \{K \setminus int_K S^{-1}(y) : y \in B_0\} = \emptyset$, from assumption (b) we have, $K = \bigcup \{int_K S^{-1}(y) : y \in B_0\}$ and hence $K = \bigcup \{int_K S^{-1}(y) : y \in B_1\}$. By noting that for each $y \in B_1$, $G^{-1}(y) = S^{-1}(y) \cap B_1$ and $int_K S^{-1}(y) \cap B_1 \subseteq S^{-1}(y) \cap B_1$

 $int_{B_1}(S^{-1}(y) \cap B_1)$, we have

$$\bigcup_{y \in B_1} \{ int_{B_1} \ G^{-1}(y) \} = \bigcup_{y \in B_1} \{ int_{B_1} (S^{-1}(y) \cap B_1) \}$$

$$\supseteq \bigcup_{y \in B_1} \{ int_K (S^{-1}(y) \cap B_1) \} = K \cap B_1 = B_1.$$

Therefore $\bigcup_{y \in B_1} \{ int_{B_1} \ G^{-1}(y) \} = B_1.$

Thus from Theorem B, there exists $x_0 \in B_1$ such that $x_0 \in T(x_0)$.

Now we will consider the case when \mathfrak{D} is a non-empty compact subset of K. Assume that T has no fixed point. We divide the remaining proof into four parts.

(1) Claim: $K \setminus int_K S^{-1}(y) \neq \emptyset$ for all $y \in K$.

Suppose that $K \setminus int_K S^{-1}(y) = \emptyset$ for some $y \in K$, then $y \notin K \setminus int_K S^{-1}(y)$. This implies that $y \in int_K S^{-1}(y) \subseteq S^{-1}(y)$ and thus $y \in S(y) \subseteq co(S(y)) \subseteq T(y)$. Therefore y is a fixed point of T, a contradiction of our assumption. Hence $K \setminus int_K S^{-1}(y) \neq \emptyset$ for all $y \in K$.

(2) Claim: the convex hull of each finite subset $\{y_1, y_2, \dots, y_n\}$ of K is contained in the union $\bigcup_{i=1}^{n} \{K \setminus int_K S^{-1}(y_i)\}$.

Let $\{y_1, y_2, \dots, y_n\}$ be a finite subset of K and $\alpha_i \ge 0$ for each $i = 1, 2, \dots, n$ with $\sum_{i=1}^n \alpha_i = 1$. Suppose that

$$\hat{x} = \sum_{i=1}^{n} \alpha_i y_i \notin \bigcup_{i=1}^{n} \{K \setminus int_K S^{-1}(y_i)\}.$$

Then $\hat{x} \in int_K S^{-1}(y_i)$ for i = 1, 2, ..., n. Thus $\hat{x} \in S^{-1}(y_i)$ for each i = 1, 2, ..., n and hence $y_i \in S(\hat{x}) \subseteq co(S(\hat{x}))$ for each i = 1, 2, ..., n. Therefore

$$\sum_{i=1}^{n} \alpha_i y_i = \hat{x} \in co(S(\hat{x})).$$

This implies that $\hat{x} \in co(S(\hat{x})) \subseteq T(\hat{x})$ and thus \hat{x} is a fixed point of T, which contradicts to our assumption. Hence the convex hull of each finite subset $\{y_1, y_2, \dots, y_n\}$ of K is contained in the union $\{x_1, x_2, \dots, x_n\}$ of $\{x_n, x_n\}$ of $\{x_$

 $\{y_1, y_2, \ldots, y_n\}$ of K is contained in the union $\bigcup_{i=1}^n \{K \setminus int_K S^{-1}(y_i)\}$. (3) Claim: $\bigcap_{y \in A} \{K \setminus int_K S^{-1}(y)\} \neq \emptyset$, where $A = co(B_1 \cup \{y_1, y_2, \ldots, y_n\})$ and $\{y_1, y_2, \ldots, y_n\}$ is a finite subset of K.

Since $A = co(B_1 \cup \{y_1, y_2, \dots, y_n\})$, A is compact and convex. Suppose that $\bigcap_{y \in A} \{K \setminus int_K S^{-1}(y)\} = \emptyset$. Then we can define a multifunction $Q: A \to 2^A$ by

$$Q(x) = \{ y \in A : x \notin K \setminus int_K S^{-1}(y) \}$$

such that Q(x) is non-empty, for each $x \in A$. For $y \in A$,

$$Q^{-1}(y) = \{x \in A : y \in Q(x)\} = \{x \in A : x \notin K \setminus int_K S^{-1}(y)\}$$
$$= \{x \in A : x \in int_K S^{-1}(y)\} = int_K S^{-1}(y) \cap A.$$

We now define another multifunction $P: A \to 2^A$ by

$$P(x) = co(Q(x)), \text{ for all } x \in A.$$

We will show that $A = \bigcup_{y \in A} \{ int_A \ Q^{-1}(y) \}$. Since $\bigcap_{y \in A} \{ K \setminus int_K \ S^{-1}(y) \} = \emptyset$, we have $\bigcup_{y \in A} \{ int_K \ S^{-1}(y) \} = K$. Hence

$$A \supseteq \bigcup_{y \in A} \{ \operatorname{int}_A Q^{-1}(y) \} \supseteq \bigcup_{y \in A} \{ \operatorname{int}_K S^{-1}(y) \cap A \} = K \cap A = A.$$

By Theorem B, there exists $x_0 \in A$ such that $x_0 \in P(x_0) = co(Q(x_0))$.

This implies that there exists a finite subset $\{y_1, y_2, \ldots, y_k\}$ of A such that $y_i \in Q(x_0)$ for $i = 1, 2, \ldots, k$, where $x_0 = \sum_{i=1}^k \alpha_i y_i, \alpha_i \ge 0$ for $i = 1, 2, \ldots, k$ and $\sum_{i=1}^k \alpha_i = 1$. This means that $x_0 \notin K \setminus int_K S^{-1}(y_i)$ for all $i = 1, 2, \ldots, k$, that is, $x_0 \in int_K S^{-1}(y_i)$ for all $i = 1, 2, \ldots, k$ and hence $x_0 = \sum_{i=1}^k \alpha_i y_i \in \bigcap_{i=1}^k \{int_K S^{-1}(y_i)\}$, which contradicts to our Claim (2). Thus $\bigcap_{y \in A} \{K \setminus int_K S^{-1}(y)\} \ne \emptyset$.

(4): From Claim (3), we have

$$\mathfrak{D} \cap \left(\bigcap_{i=1}^{n} \{ K \setminus int_{K} \ S^{-1}(y_{i}) \} \right) = \left(\bigcap_{y \in B_{0}} \{ K \setminus int_{K} \ S^{-1}(y) \} \right) \cap \left(\bigcap_{i=1}^{n} \{ K \setminus int_{K} \ S^{-1}(y_{i}) \} \right)$$

$$\supseteq \bigcap_{y \in A} \{ K \setminus int_{K} \ S^{-1}(y) \}, \text{ as } B_{0} \cup \{ y_{1}, y_{2}, \dots, y_{n} \} \subseteq A$$

$$\neq \emptyset.$$

That is, for each finite subset $\{y_1, y_2, \ldots, y_n\}$ of K, $\mathfrak{D} \cap \{\bigcap_{i=1}^n \{K \setminus int_K S^{-1}(y_i)\}\} \neq \emptyset$. Since \mathfrak{D} is compact and $\{K \setminus int_K S^{-1}(y)\}$ is closed, $\{K \setminus int_K S^{-1}(y)\} \cap \mathfrak{D}$ is compact for each $y \in K$. Hence $\bigcap_{y \in K} (\{K \setminus int_K S^{-1}(y)\} \cap \mathfrak{D}) \neq \emptyset$ and therefore $\bigcap_{y \in K} \{K \setminus int_K S^{-1}(y)\} \neq \emptyset$, which contradicts to our condition (b). Thus T has a fixed point.

The following result generalizes Corollary 1 in [8].

Corollary 2.1. Let K be a non-empty convex subset of a Hausdorff topological vector space X, and let $S, T : K \to 2^K$ be two multifunctions. Assume that

- (a) for each $x \in K$, $co(S(x)) \subseteq T(x)$ and S(x) is non-empty,
- (b) $K = \bigcup \{ int_K S^{-1}(y) : y \in K \},$
- (c) there exists a point $y_0 \in K$ such that $\{K \setminus int_K S^{-1}(y_0)\}$ is either empty or compact.

Then there exists $x_0 \in K$ such that $x_0 \in T(x_0)$.

Proof. Take
$$B_0 = B_1 = \{y_0\}$$
 in Theorem 2.1.

We note that the condition (b) of Theorems B, 2.1 and Corollary 2.1 is equivalent to the following condition of Tarafdar [7]:

(b') for each $y \in K$, $S^{-1}(y) = \{x \in K : y \in S(x)\}$ contains a relatively open subset O_y of $K(O_y)$ could be empty such that $\bigcup_{y \in K} O_y = K$.

3. Coincidence Theorems

The following coincidence theorem can be easily derived from Theorem 2.1.

Theorem 3.1. Let K be a non-empty convex subset of a Hausdorff topological vector space X, and let $\Phi, \Psi : K \to 2^K$ be two multifunctions. Assume that the following conditions hold.

- (a) For each $x \in K$, $\Psi^{-1}(\Phi(x))$ is non-empty and convex.
- (b) $K = \bigcup \{ int_K \Phi^{-1}(\Psi(y)) : y \in K \}.$
- (c) There exists a non-empty subset B_0 of K such that B_0 is contained in a compact convex subset B_1 of K and the set $\mathfrak{D} = \bigcap \{K \setminus \operatorname{int}_K \Phi^{-1}(\Psi(y)) : y \in B_0\}$ is either empty or compact.

Then there exists $x_0 \in K$ such that $\Phi(x_0) \cap \Psi(x_0) \neq \emptyset$.

Proof. By taking $S \equiv \Psi^{-1} \circ \Phi$ in Theorem 2.1 for $S \equiv T$ and S(x) is convex for all $x \in K$, we get the conclusion.

Corollary 3.1. Let K be a non-empty convex subset of a Hausdorff topological vector space X, and let $\Phi, \Psi : K \to 2^K$ be two multifunctions. Assume that the following conditions hold.

- (a) For each $x \in K$, $\Psi^{-1}(\Phi(x))$ is non-empty and convex.
- (b) $K = \bigcup \{ int_K \Phi^{-1}(\Psi(y)) : y \in K \}.$
- (c) There exists a point $y_0 \in K$ such that $\{K \setminus int_K \Phi^{-1}(\Psi(y_0))\}$ is either empty or compact.

Then there exists $x_0 \in K$ such that $\Phi(x_0) \cap \Psi(x_0) \neq \emptyset$.

Proof. Taking $B_0 = B_1 = \{y_0\}$ in Corollary 2.1.

Acknowledgement. The author would like to express his thanks to Professor Jen-Chih Yao, National Sun Yet-sen University, Kaohsiung, Taiwan and anonymous referee for their careful reading and valuable suggestions.

References

- 1. Ansari, Q.H., Yao, J.C.: On strong solutions of the generalized implicit vector variational problem, *Adv. Nonlinear Var. Inequal.* 2(1), 1-10 (1999).
- 2. Ansari, Q.H., Yao, J.C.: A fixed point theorem and its applications to a system of variational inequalities, *Bull. Austral. Math. Soc.* 59, 433-442 (1999).
- 3. Browder, F.E.: The fixed point theory of multivalued mappings in topological vector spaces, *Math. Ann.* 177, 283-301 (1968).

- Ding, X.P., Kim, W.K., Tan, K.K.: A selection theorem and its applications, Bull. Austral. Math. Soc. 46, 205-212 (1992).
- Park, S.: Some coincidence theorems on acyclic multifunctions and applications to KKM theory, in *Fixed Point Theory and Applications*, edited by K.K. tan, World Scientific, River Edge, New Jersey, p. 248–277 (1992).
- Tan, K.K., Yuan, X.Z.: A minimax inequality with applications to existence of equilibrium points, Bull. Austral. Math. Soc. 47, 483-503 (1993).
- Tarafdar, E.: On nonlinear variational inequalities, Proc. Amer. Math. Soc. 67, 95-98 (1977).
- 8. Tarafdar, E.: A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem, J. Math. Anal. Appl. 128, 475-479 (1987).
- 9. Wu, X., Shen, S.: A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications, J. Math. Anal. Appl. 196, 61-74 (1996).
- Yannelis, N.C., Prabhakar, N.D.: Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12, 233-245 (1983).