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1. Introduction and preliminaries

Let X and Y be two topological vector spaces. Let K be a non-empty convex subset
of X and F : K x K — II{Y) be a multifunction, where II(Y) denotes the set of all
non-empty subsets of Y. Let C : K — II(Y) be a multifunction such that for each z €
K, C(z) is a proper, closed and convex cone with int C(z) # @ and P = [\, C(z),
where int C'(z) denotes the interior of C(z). We consider the following generalized vector
equilibrium problem:

Find z € K such that F(Z,y) € —int C(Z), for all y € K. (GVEP)

For F : K x K — Y is a single-valued map, (GVEP) is known as vector equilibrium prob-
lem [13], which includes vector variational inequalities [12,13], vector optimization problems,
vector saddle point problems and Nash equilibrium problem for vector-valued functions as
special cases; see, for example [3, 27]. Fu [11] also considered vector equilibrium problem
and its simultaneous problems. For further details on vector equilibrium problems, we refere
to [3, 4, 7, 11, 13, 14, 19, 23, 27] and references therein.

We denote by L(X,Y) the space of all continuous linear operators from X to Y. Let
P : L(X,Y)x K x K=Y be a function and T : K — II(L(X,Y)) be a multifunction. We
define

F(z,y) =¢(T(z),z,y) = UuET(:z:)'Z/)(ua ,y)-

Then (GVEP) reduces to the following implicit vector variational inequality problem:
Find Z € K such that ¥(T(z),Z,y) € —int C(Z), forally € K, (IVVIP)

equivalently, to find Z € K such that for each y € K, there exists @ € T(Z) satisfying

P(a,2,y) ¢ —int C(Z).
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This problem was considered by Lee and Kum [20], which includes generalized vector vari-
ational and variational-like inequalities as special cases; see, for example [1, 2, 5, 9, 13, 14,
15, 17, 18, 21, 22, 26] and references therein.

The (GVEP) was first proposed by Ansari et al [4] for non-moving cone and they es-
tablished some existence results on compact set K by using the partition of unity. Oettli
and Schliger [24] extended and generalized results of 4] for moving cone and derive some
existence results for generalized vector variational inequalities. Konnov and Yao [16] ex-
tended and modified results of [24] and [11] for C,-pseudomonotone multifunctions by using
Fan-KKM Theorem. Recently in [6], (GVEP) has been studied by using a fixed point the-
orem due to Tarafdar [28]. The main purpose of this paper is to establish some existence
results for solutions to (GVEP) for Cy-pseudomonotone as well as C-quasimonotone mul-
tifunctions by using Fan-Browder type fixed point theorem of Park [25]. We also prove
an existence result without any kind of monotonicity assumption. As special cases, we de-
rive some existence results for solutions to the implicit vector variational inequalities. Our
results generalizes known results in the literature.

In the rest of this section, we present some notation, definitions and results which will
be used in the sequel.

Let A: X — II(Y) be a multifunction. The graph of A, denoted by G(4), is

GA)={(z,y) e X xY :z € X,y € A(z)}.
The inverse A~ of A is a multifunction from the range of A to X defined by
z€ A7} (y) ifand onlyif y € A(z).

We first mention a particular form of Theorem 1 in [25] which is modified by Lee and
Kum [20] into convenient shape. This theorem is a generalization of well-known fixed point
theorem of Fan-Browder [8, 10].

Theorem A. Let K be a convez subset of a Hausdorff topological vector space X and D be
a non-empty compact subset of K. Let A, B : K — II(K) U {0} be two multifunctions such
that

(a) for each z € K, A(z) C B(z);

(b) for each z € K, B(z) is convez;

(c) for each z € D, ( ) is non-empty;

(d) for each y € K, A~1(y) is open in K;
)

(e) for each finite subset N of K, there ezists a non-emply compact convez subset Ly of
K containing N such that for each z € Ly\D, A(z) N Ly # 0.

Then B has a fized point xg, that is, Tg € B(zg).
Now we mention some definition and a result which will be used in the sequel.

Definition 1. A multifunction F': K x K — II(Y) is called
(i) Cy-quasiconvez-like [6] if, for all z, 3/, 3" € K and a € (0,1), we have either
F(z,0y' + (1 — a)y") C F(z,y') — C(z)

or
F(z,ay + (1 - a)y") C F(z,y") - C(z);
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(i) explicitly Cp-quasiconvex — like if, it is Cp-quasiconvex-like and, in case F(z,y") —
F(z,y') € —int C(z), for all z, ', ¥" € K and a € (0,1), we have
F(z,0y' + (1 - )y") C F(z,y") — int C(x);
(iii) explicitly §(Cy)-quasiconvez [16] if, for all ¢/, 3" € K and o € (0,1), we have either
F(ya,y') € F(Yar¥a) + C()

or
F(yaay”) - F(yaaya) + C(yl)a

and, in case F (Yo, %) = F(Ya,9") C int C(3'), for all & € (0,1), we have
F(yaay') C F(Ya,Yo) + int C(yl),

where yo = ay’ + (1 — a)y";
(iv) Cy-pseudomonotone (16] if, for all z,y € K, we have

F(z,y) € —int C(z) implies - F(y,z) ¢ —int C(x).
(v) Cs-quasimonotone if, for all z,y € K, we have

F{z,y) € ~C{z) implies — F(y,z)Z —int C(z).

Remark 1. The concept of C-quasimonotonicity can be viewed as an extension of that of
quasimonotonicity in [7] on the multivalued and moving case.

Definition 2. A multifunction T : K — II(Y) is called

(i) upper semicontinuous on K if, for each 2p € K and any open set V in Y containing
T'(zp), there exists an open neighbourhood U of zp in K such that T'(z) C V for all
z € U,
(i) u-hemicontinuous [15] if, for any z,y € K and ¢ € [0,1], the multifunction o —
T(az + (1 — @)y) is upper semicontinuous at 07;
(iii) P-convez if, for all z,y € K and ¢ € (0,1),

T(oz+ (1 —o)y) CaoT(z)+ (1 —a)T(y) — P.
Definition 3. Let ¢ : L(X,Y) x K x K = Y be a given function. A multifunction
T:K —TII(L(X,Y)) is called

(i) generalized weakly Cy-pseudomonotone w.r.t. 9 [20] if, for any z,y € K and for any
u € T(x), we have

P(u,z,y) ¢ —int C(z) implies —9(v,y,z) ¢ —int C(z) for some v € T'(y);

(i1) generalized weakly Cy-quasimonotone w.r.t. o if, for any z,y € K and for any u €
T(z), we have

P(u,z,y) ¢ —C(z) implies —(v,y,z) ¢ —int C(z) for some v € T(y);
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(iii) generalized weakly Cy-pseudomonotonet w.r.t. < if, for any z,y € K and for some
u € T(z), we have

P(u,z,y) ¢ —int C(z) implies —(v,y,z) ¢ —int C(z) for some v € T'(y);

(iv) generalized weakly Cy-quasimonotone™ w.r.t. 1 if, for any z,y € K and for some
u € T'(z), we have

P(u,z,y) ¢ —C(z) implies —¢(v,y,z) ¢ —int C(z) for some v € T(y);

(v) generalized hemicontinuous w.r.t. + [20] if, for any z,y € K and a € [0,1], the
multifunction
a P(T(z+aly —z)),z+ oy — z),7)

is upper semicontinuous at 0%, where

P(T(z+aly — ),z +aly — z),y) = {¥(t,z+aly —2),y) : t€T(z+aly 1))}

Remark 2. It is clear from the definitions that every generalized weakly C,- pseudomonotone™
(Cy - quasimonotone™) is generalized weakly Cy- pseudomonotone (C,- quasimonotone) but
the reverse assertion is not true in general.

Definition 4. A function ¢ : L(X,Y) x K x K = Y is called

(i) Cy-quasiconvez-like if, for all z, v/, y" € K and a € (0,1), we have either for all
u € T{z),
¢(ua$,ay’ + (1 - a)y”) € d)(uaz,yl) - C(ZE)

or
Yz, oy + (1 —a)y") € P(u,2,y") — C(z);

(ii) explicitly Cyg-quasiconvex —like if, it is Cp-quasiconvex-like and, in case ¥ (u, z,y") —
P(u,z,y’) ¢ —int C(z), for all z, ¢/, ¥ € K, u € T(z) and « € (0,1), we have

P(u,z, 0y + (1 - a)y") € Y(u,3,y") — int C(a);

(ili) explicitly 6(Cy)-quasiconvez if, for all ¢/, y" € K, yo = oy’ +(1—a)y” and « € (0,1),
we have either for all v, € T'(yq)

w(va,ya,y,) € Y(va, Ya» Ya) + C(y,)

or
¢(va,ya,y") € "/’(vaaya,ya) + C’(y'),

and, in case ¥(va,Ya, ¥') — ¥(Vas Yo y¥") € int C(y') for all o € (0,1), we have

"l)(vaaya’yl) € Y(va, yaaya) + int C(y/)-

Lemma 1. Let K be a non-empty convez subset of X. Let C : K — II(Y') be a multifunction
such that for each z € K, C(z) is a proper, closed and convez cone with int C(z) # 0 and
P =,exCl(z). Let F : K x K — II(Y) be a multifunction. Consider the following
problems:
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() Findz € K : F(z,y) € —int C(z), forallye K.
(Il) Findz € K : —F(y,z) € —int C(z), forallye K.
Then,

(i) Problem (1) implies Problem (II) if F' is Cyp-pseudomonotone;
(ii) Problem (II) implies Problem (1) if F' is explicitly §(Cy)-quasiconvez, F(y,y) C P and
F(-,y) is u-hemicontinuous for any y € K.

Proof. See Corollary 2.1 in [16]. O

Remark 3. The assumption “F is explicitly 6(Cy)-quasiconvex” in Lemma 1 (ii} can be
replaced by the following condition.

(ii)" For each z € K, F(z,-) is P-convex.

2. Existence results

We first establish an existence result for solutions to (GVEP) under Cy- pseudomono-
tonicity assumption.

Theorem 1. Let Y be a topological vector space. Let K be a conver subset of a Hausdorff
topological vector space X and D be a non-empty weakly compact subset of K. Assume that:

(1) C: K = IY) is a multifunction such that for each z € K, C(z) is a proper, closed
and convez cone in'Y with int C(z) # 0 and P = (,cx C();
(ify F: K x K = (Y} is a multifunction such that

(a) for each z € K, F(z,z) C P,

(b) F is Cy-pseudomonotone,

(d) foreachye K, Q(y) ={z € K: -F(y,z) € —int C(z)} is weakly closed in K,

)
)
(c) F is Cr-quasiconvez-like and ezplicitly §{(C;)-quasiconver,
)
(e) for each y € K, F(-,y) is u-hemicontinuous;

(iii) for each finite subset N, there exists a non-empty weakly compact convez subset Ly
of K containing N such that for each z € Ly\D, there is a y € Ly satisfying
—F(y,z) C —int C(z).

Then there exists a solution T € D to (GVEP).

Proof. Let K be equipped with the weak topology from X. We define two multifunctions
A,B: K —»TI(K)U {0} by

Alz)={ye€ K: —-F(y,z) C —int C(z)}

and
B(z) ={y € K : F(z,y) C —int C(z)},
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for all z € K.
19, For each z € K, A(z) C B(z): Let z € A(z), then we have
—F(z,z) C —int C(z). 1
Assume that z ¢ B(z), then we have
F(z,z) € —int C(x).
By C-pseudomonotonicity of F, we get
~F(z,z) € —int C(z),

which contradicts to (1}. Hence A{z) C B{z), for all z € K.
20, For each z € K, B(z) is convex: Let y',y" € B(z), then for all z € K,

F(z,y') C —int C(z) (2)

and
F(z,y") C —int C(z). (3)

Since F is Cy-quasiconvex-like, for all o € [0, 1], we have either

Flz,ay +(1-a)y") C Fl(z,y) - C(a)
C —int C(z) — C(z) by (2)
C —int C(x),
or
F(.’L‘, ay' + (1 - oz)y") - F(l‘, y”) - C(x)
C —int C(z) — C{z) by (3)
C —int C(z).

In both the cases, we get
F(z,ay + (1 - a)y") C —int C(z).

Hence ay’ + (1 — @)y” € B(z) and so B(z) is convex.
30: By (ii)(d), for each y € K, A~!(y) is weakly open in K.
49: By hypothesis (iii), for each finite subset N, there exists a non-empty weakly compact
convex subset Ly of K containing N such that for each € Ly\D, there isa y € Ly
satisfying —F(y,z) C —int C(z). Thus A(z) N Ly # 0.
59: B has no fived point: Assume that B has a fixed point x € K. Then F(z,z) C —int C(z).
By assumption (ii}(a), we have F(z,z) C —int C{z) NP C —int C(z)NClz) = B, a
contradiction. Indeed, if there were a v € —int C(z) N C(z), then 0 = —v + v € int C(z) +
C(z) C int C(z). This implies that C({z) =Y because int C(z) 3 0 is an absorbing set in
Y, which contradicts the assumption that C(z) is proper. Therefore, B has no fixed point.
Since B has no fixed point, we reach to a conclusion that either A or B would not
satisfy at least one of the hypotheses of Theorem A. But, as we have seen above that A
and B satisfy all the hypotheses of Theorem A except (c), that is, for each z € D, A(z) is
non-empty. Hence, there must be an T € D such that A(Z) =0, i.e.

—F(y,z) € —int C(Z), forally € K.
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By Lemma 1 (b), we have
F(zZ,y) € —int C(z), forally € K,

as desired. O

Remark 4. The assumption (ii){c) and (ii)(d), respectively, in Theorem 1 can be replaced
by the following conditions:

(c)' For each z € K, F(z,-) is P-convex;
(d)" The multifunction W : K — II(Y) is defined as W(z) = Y\{—int C(z)}, for each
z € K such that its graph is weakly closed in K X Y, and

(d)" for each z € K, F(z,-) is upper semicontinuous with non-empty compact values on
K.

Proof. It is sufficient to show that for each y € K, A™!(y) is weakly open in K, where 4
is defined as in the proof of Theorem 1.

Indeed, if {A™1(y)}¢ = @ then A~!(y) = K which is weakly open in K. So, we assume
that A71(y) # K. Let {za}xer be a net in {A1(y)}° weakly convergent to € K. Then
~F(y,z)) € —int C(z,), that is, there exists z), € —F(y,z)) such that z) ¢ —int C(z,),
or z, € W(z,), for all A. Let M = {z;}{J{z}. Then M is compact and z, € —F(y, M)
which is compact. Therefore {z)} has a convergent subnet with limit z. Without loss
of generality we may assume that {z)} converges to 2. Then by upper semicontinuity of
F(y,-), we have z € ~F(y,z). Also since W has a weak closed graph in K X Y, we have
2z € W(z). Consequently, z € —F(y,z) and z ¢ —int C(z), i.e., —F(y,z) € —int C(z).
Thus z € {A™!(y)}°. Therefore, {A7}(y)}° = {z:z ¢ A~}(y)} C K is weakly closed hence
A~1(y) is weakly open in K with respect to the relative topology. O

Corollary 1. Let Y be a topological vector space. Let K be a convez subset of a Hausdorff
topological vector space X and D be a non-empty weakly compact subset of K. Assume that:

(i) C: K = II(Y) is a multifunction such that for each x € K, C(z) is a proper, closed
and convez cone in Y with int C(z) # 0 and P = ,cx C(z);
(if) W : K = II(Y) is a multifunction defined as W (z) = Y\{—int C(z)}, for eachz € K
such that its graph is weakly closed in K xY;
(i) ¥: L(X,Y)x K x K =Y is a function and T : K — II{L{X,Y)) is a multifunction

with compact values such that

(a) for each z € K and for all u € T(z), Y(u,z,z) C P,

(b) T is generalized weakly Cy-pseudomonotone™ w.r.t. 1,
(¢) 9 is Cyp-quasiconvexz-like and explicitly 6(Cy)-quasiconver,
(d) for each z € K, (-, z,") is continuous,

(e) T is generalized hemicontinuous w.r.t. h;

(iv) for each finite subset N, there exists a non-empty weakly compact convex subset Ly
of K containing N such that for each © € Ly\D, there is a y € Ly such that for all
v € T(y),
—(v,y,z) € —int C(z).
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Then there exists o solution £ € D to (IVVIP).

Proof. We set

F(:z:,y) = ¢(T(-’E)a$, y) = UuET(m)w(uaz)y)! for all z,y € K.

Then it is easy to verify all the conditions of Theorem 1. Hence by Theorem 1, there exists
Z € D such that
F(z,y) € —int C(Z), forally e K,

which is equivalent to say that there exists Z € D such that for each y € K, there exists
% € T(Z) satisfying
(a,z,y) ¢ —int C(z). O

Remark 5. The assumption (iii)(d) in Corollary 1 can be replaced by the following condi-
tion:

(d)" For each z € K and for all u € T(z), ¥(u,s,-) is P-convex.

In this case, Corollary 1 improves Theorem 3.1 in [20].

We now provide existence results for Cp-quasimonotone multifunctions, which strictly
contain the class of C;-pseudomonotone multifunctions.

Let us give some notation and recall some definitions. Given z and y in a vector space E,
we denote by [z, y] and ]z, y[ the closed and open line segments joining z and y, respectively.
If K is a nonempty convex subset of E, then z € K is a relative algebraic interior point of K
if for any 4 € E such that £ +u € K, there exists ¢ > 0 such that Jz — ey, z+eu[ C K. The
set of relative algebraic interior points of K is denoted by riK. We note that if 0 < a < ¢,
then |z — au,z + ou| C Jz —eu,z + cul.

Lemma 2. Let K be a non-empty convez subset of X. Let C : K — (Y} be a multifunction
such that for each x € K, C(x) is a proper, closed and convez cone with int C(z) # 0. Let
F:Kx K —II(Y) be a Cy-quasimonotone, ezplicitly C;-quasiconvez-like multifunction
and F(-,z) be u-hemicontinuous for any z € K. Then, for each pair of points z € K,
y € riK, at least one of the following must hold:

(i) F(y,z) Cint C(z) implies F(z,y) C —int C(z),

or

(ii) F(z,2) € —int C(z), for all z € K.

Proof. Let F(y,z) C int C(z) for some z € K, y € 1iK, and let there exist z € K such that
F(z,z) C —int C(z). Since y + (2 —y) = z € K, it follows from the definition of relative
algebraic interior point that there is € > 0 such that |y — e(z — y),y + €(z —y)[ C K. Then
for any 8 with 0 < 8 < 1, we have

=By —e(z—y)+(1-B)(y+ez~y) =y+ (26— 1e(y —2) € K.

Therefore by choosing g with % < B < 1 and letting € to be sufficient small if necessary, we
conclude that there exists vy € (0,1} such that y + v(y — 2) € K for all v € (0,7)-
By u-hemicontinuity of F(-,z), it follows that, for some a € (0, 1),

F(zq,2) C int C(z),
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where z, =y + a(y — 2) € K. Since F is Cz-quasimonotone, we have
F(.’E,Za) - —C((E)

Since 2z = (1 + a)y — oz, we have y = Bz + (1 — B)za € ]2a,2[ with B = ;. Besides,
Y € )za,2[ and F' is explicitly Cz-quasiconvex-like. In case F(z,2,) C —int C(z) it follows
that either

F(z,y) C F(z,2) — C(z) C —int C(z),

" F(z,y) C F(z,2) - C(a) C —int C(a).

Otherwise, if F'(z,2,) € —int C(z), then F(z, z,) — F(z,2) € —int C(z), and we must have
F(z,y) C F(z,2,) — int C(z) C —int C(z).

In all the cases, we obtain the desired result. O

Remark 6. Lemma 2 can be viewed as some extension of the negative formulation of
Lemma 2.1 in [14].

Theorem 2. Let X, Y, K, D, C, P and F be the same as in Theorem 1 ezcept the
assumptions (ii)(b), (ii){(c), (i1)(d) and (iii) which are replaced with the following conditions:

(ii)(b)y F is Cy-quasimonotone,

(ii)(c) F is ezplicitly Cy-quasiconvez-like and ezplicitly §(Cy)-quasiconvez,

(i1)(d) the multifunction W : K — II(Y) is defined as W(z) = Y \ {~int C(z)}, for each
x € K such that its graph is weakly closed in K X Y,

it)(d)" for each z € K, F T, 18 upper semicontinuous with non-empt compact values on
Y
-K;

and

(iil)" for each finite subset N, there ezists a non-empty weakly compact convezs subset
Ly of K containing N such that for each © € Ly\D, there is a y € Ly NriK satisfying
—F(y,z) C —int C(z).

In addition, suppose that riK # (.

Then there exists a solution T € D to (GVEP).

Proof. We define two multifunctions 4, B : K — 2% U {0} by
Alz) = {y €riK : —F(y,z) C —int C(z)}
and
B(z) = {y € 1iK : F(z,y) C —int C(z)},

for all z € K.
First we note that from Lemma 2 it follows that, for each z € K, either A(z) C B(z),
or
F(z,y) € —int C{z), forall y € K.
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Next, following steps 20 — 5° in Theorem 1 we see that the corresponding conclusions are
true for these multifunctions A and B as well. It follows that there exists an Z € D such
that A(z) =0, i.e.

—F(y,z) € —int C(Z), for all y € riK.

Take any z € K and 3 € riK and suppose that
—F(z,z) C —int C(Z).
Then, by u-hemicontinuity of F(-,Z), there is an y € ]z,9/[ C riK such that
—F(y,z) C —int C(7),
a contradiction. Hence,
—F(y,z) & —int C(z), forall y € K.
By Lemma 1 (b), we now have
F(Z,y) € —int C(Z), forall y€ K,

as desired. O

Corollary 2. Let X, Y, K, D, C;, W, P,v and T be the same as in Corollary 1 ezcept
the assumptions (iii) (b), (iil) (c¢) end (iv) which are replaced with the following conditions:

(iii)(b)" T s generalized weakly Cy-quasimonotone® w.r.t. 1,
(ili)(c) o is explicitly Cy-quasiconvez-like and ezplicitly 6(Cy)-quasiconvez,

and
(iv)" for each finite subset N, there exists a non-empty weakly compact convex subset
Ly of K containing N such that for each x € Ly\D, there is ay € Ly NriK y € Ly such
that for all v € T(y),
—(v,y,z) € —int C(z).

In addition, suppose that riK # (.
Then there exists a solution Z € D to (IVVIP).

Remark 7. When (u, z,y) = (v,y—2z), forall z,y € K and u € T(z), where (/, z) denotes
the evaluation of I € L(X,Y) at z € X, Corollary 2 generalizes Theorems 1 and 3 in [9]
and Theorem 4.1 in [14].

Now we provide an existence result of solution to (GVEP) without any kind of mono-
tonicity assumption.

Theorem 3. Let X, Y, K, D, C and P be the same as in Theorem 1. Let F: K x K —
II(Y) be a multifunction satisfying the following properties:

(i) for each z € K, F is Cy-quasiconvez-like;
(ii) for eachy € K, Q(y) = {z € K : F(z,y) € —int C(z)} is weakly closed in K;
(iii) for each z € K, F{z,z) C P;
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(iv) for each finite subset N, there ezists a non-emply weakly compact convex subset Ly
of K containing N such that for each x € Ly\D, there is a y € Ly satisfying
—F(y,z) C —int C(z).

Then there ezists a solution T € D to (GVEP).

Proof. We define a multifunction B : K — 2% by
B(z)={ye€ K: F(z,y) C —int C(z)}, forall z € K.

1°. For each z € K, B(z) is convex and B has no fixed point as we have seen in the proof
of Theorem 1.
20, By (ii), foreachy € K, B~(y) = {z € K : y € B(z)} = {z € K : F(z,y) C —int C(z)}
is weakly open in K.
3%, By the hypothesis (iv), for each finite subset N, there exists a non-empty weakly
compact convex subset Ly of K containing N such that for each z € Ly\D, there is a
y.€ Ly satisfying —F(y,z) C —int C(z). Thus B(z) N Ly # 0.

By the same argument as in Theorem 1, there must be an Z € D such that B(Z) = 0,
i.e. T is a solution to (GVEP). 0O

Remark 8. The assumption (ii) in Theorem 3 can be replaced by the following conditions:

(d)’ The multifunction W : K — II(Y) is defined as W(z) = Y \ {—int C(z)}, for each
x € K such that its graph is weakly closed in K x Y; and

(d)"” For eachy € K, z — F(z,y) is upper semicontinuous with non-empty compact values
on K.

Corollary 3. Let X, Y, K, D, C, W and P be the same as in Corollary 1. Let 1 :
L(X,Y) X K x K =Y be a function and T : K — I(Y) be a multifunction with compact
values such that

(i) for each z € K, v is Cy-quasiconvez-like;
(ii) for each y € K, (-, y) is continuous;
(iii) for each z € K and for all u € T(z), ¥(u,z,z) C P;
(iv) for each finite subset N, there exists a non-empty weakly compact convex subset Ly
of K containing N such that for each z € Ly\D, there is ay € Ly y € Ly such that
for all v € T(y),
—tp(v,y,2z) € —int C(x).

Then there exists a solution T € D to (IVVIP).

Remark 9. Corollary 3 generalizes Theorem 3.2 in [20].
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