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Existence of a Solution and Variational Principles
for Vector Equilibrium Problems1
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Abstract. In this paper, we prove an existence result for a solution to
the vector equilibrium problems. Then, we establish variational prin-
ciples, that is, vector optimization formulations of set-valued maps for
vector equilibrium problems. A perturbation function is involved in our
variational principles. We prove also that the solution sets of our vector
optimization problems of set-valued maps contain or coincide with the
solution sets of vector equilibrium problems.
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1. Introduction and Preliminaries

The classical variational inequality (Ref. 1) for vector-valued functions
is known as a vector variational inequality (VVI); it has been introduced in
1980 (see Ref. 2) with further applications in finite-dimensional spaces. Since
then, the theory of vector variational inequalities has emerged as a new
direction for researchers. Because of the applications, it has been studied
and generalized by many authors; see for example Ref. 3 and references
therein. Recently, Chen et al. (Ref. 4) introduced a gap function for VVI in
order to convert a VVI problem into a vector optimization problem (VOP);
the significance of their work is that one can study the VVI via the VOP.

Another generalization of the classical variational inequality is the
equilibrium problem (Refs. 5–19), which includes as special cases various
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problems, for example complementarity problems, optimization problems,
and saddle-point problems. Inspired by early results on this field, many
authors considered and studied the vector equilibrium problem (VEP), that
is, the equilibrium problem for vector-valued functions; see for example
Refs. 3, 14–15, 20–27, and references therein.

We remark that Auchmuty (Ref. 28) proposed variational principles
which generalize the concept of gap function (Ref. 29–30) for the variational
inequality. Later, Blum and Oettli (Ref. 31) proposed also variational prin-
ciples for equilibrium problems. Motivated by the recent prosperous devel-
opment of the VVI and the VEP, our aim in this paper is to contribute to
the VEP literature. We derive an existence result for a solution of the VEP.
We propose also variational principles for the VEP by using as perturbation
function. The work of this paper is a continuation of the work in Ref. 32.

Let X and Y be topological vector spaces, and let C be a pointed closed
convex proper cone in Y with int C≠∅ , where int C denotes the interior of
the set C. Then C induces a vector ordering in Y setting, for all x, y ∈ C,

x⁄y, if and only if yAx ∈ C,

x⁄� y, if and only if yAx ∉ C.

Since int C≠∅ , we have also a weak order in Y setting, for all x, y ∈ C,

xFy, if and only if yAx ∈ int C,

xF� y, if and only if yAx ∉ int C.

The orderings ¤ , ¤� ,H,H� are defined similarly.
Let K be a nonempty convex set in X, and let f: KBK→Y be a bifunc-

tion such that

f (x, x)G0, for all x ∈ K.

Then, we consider the vector equilibrium problem (VEP), which is to find
x0∈ K such that

f (x0, y)F� 0, for all y ∈ K. (1)

The solution set of this problem will be denoted by P.
Existence of a solution of this problem is investigated in Refs. 14–15

and 21–22. For the case of a moving cone, it is studied also in Refs. 20 and
24. For a direct application of the VEP, we refer to Ref. 23.

A function q: K→Y is called quasiconvex (Ref. 22) if, for all α ∈ Y, the
set

U⁄ (α )G{x ∈ K: q(x)⁄α }
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is convex. If q is quasiconvex, then the set

UF (α )G{x ∈ K: q(x)Fα }

is convex also (see Ref. 22).
A function q: K→Y is called upper semicontinuous (Refs. 33–34) on

K if, for all α ∈ Y, the (upper level) set

U (α )G{x ∈ K: q(x)F� α }

is closed in K.
If A is a nonempty subset of Y, then we set

maxC A_{a ∈ A � there exists no a′ ∈ A such that a′≠ a and a′¤a},

minC A_{a ∈ A � there exists no a′ ∈ A such that a′≠ a and a′⁄a},

wAmaxC A_{a ∈ A � there exists no a′ ∈ A such that a′Ha},

wAminC A_{a ∈ A � there exists no a′ ∈ A such that a′Fa}.

Note that it is possible that maxC AG∅ .
A point-to-set map T: X →→ X is called a KKM-map if, for any finite

subset {x1, x2, . . . , xn} of X,

conv({x1, x2, . . . , xn}) ⊆ *
n

iG1
T (xi ),

where conv(A) denotes the convex hull of a nonempty set A ⊆ X.
We shall use the following well-known Fan-KKM theorem to prove

the existence of a solution to the VEP.

Lemma 1.1. See Ref. 35. Let A be an arbitrary set in a topological
vector space X. Let T: A →→ X be a KKM-map such that T (x) is closed for
all x ∈ A and is compact for at least one x ∈ A. Then )x ∈ A T (x)≠∅ .

2. Existence Result

For all A ⊂ X, we denote by clX (A) the closure of A in X and by F (X )
the family of all nonempty finite subsets of X.

In this section, we prove the following existence theorem for a solution
to the VEP.

Theorem 2.1. Let K be a nonempty convex subset of a topological
vector space X and, for each y ∈ K, let x > f (x, y) be upper semicontinuous
on each nonempty compact subsets of K. Assume that there exists a function
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p: KBK→Y such that:

(a) for each x, y ∈ K, f (x, y)F0 implies p(x, y)F0,
(b) for each A ∈ F (X ) and each x ∈ co(A), y > p(x, y) is quasiconvex,
(c) for each x ∈ K, p(x, x)F� 0,
(d) there exist a nonempty closed compact subset D ⊆ K and y* ∈ D

such that p(x, y*)F0, for all x ∈ K \D.

Then, there exists x0∈ D ⊆ K such that

f (x0, y)F� 0, for all y ∈ K.

Proof. For each y ∈ K, we define

G(y)G{x ∈ D: f (x, y)F� 0}.

For each y ∈ K, since x > f (x, y) is upper semicontinuous on each non-
empty compact subsets of K, we have that each G(y) is closed. Since every
element x0∈ )y ∈ K G(y) is a solution of (3), we have to prove that

)
y ∈ K

G(y) ≠ ∅ .

Since D is compact, it is sufficient to show that the family {G(y)}y ∈ K has
the finite intersection property.

Let {y1, y2, . . . , ym} be a finite subset of K. We note that

A_conv({y1, y2, . . . , ym})

is a compact convex subset of K. We define a point-to-set map F: A →→ A as

F ( y)G{x∈ A: p(x, y)F� 0}, for all y ∈ A.

By condition (c), F (y) is nonempty. We see that F is a KKM-map.
Suppose that there exists a finite subset {û1, û2, . . . , ûn} ⊆ A and scalars

α i¤0, iG1, . . . , n, with ∑n

iG1 α iG1, such that

∑
n

iG1

α iûi ∉ *
n

iG1
F (ûi ).

Then, we have

p� ∑
n

iG1

α iûi , ûi�F0, for all i.

By condition (b), we have

p� ∑
n

iG1

α iûi , ∑
n

iG1

α iûi�F0,
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a contradiction to condition (c). Hence, F is a KKM-map. From Condition
(a), we have that

F (y) ⊆ G(y), for all y ∈ A.

We note that, for each y ∈ A, clA (F (y))is closed in A and therefore is compact
also. By Lemma 1.1,

)
y ∈ A

clA (F (y))≠∅ .

We can choose

x̄ ∈ )
y ∈ A

clA (F (y)),

and note that y* ∈ A and F (y*) ⊆ D by (d). Thus,

x̄ ∈ clA (F (y*)) ⊆ clK (F (y*))GclD (F (y*)) ⊆ D.

Since

x̄ ∈ )
m

jG1
clA (F (yj ))

and since, for each jG1, 2, . . . , m,

clA (F (yj ))GclA ({x ∈ A: p(x, yj )F� 0})

⊆ clA ({x ∈ A: f (x, yj )F� 0})

G{x ∈ A: f (x, yj )F� 0},

we have

f (x̄, yj )F� 0, for all jG1, 2, . . . , m,

and hence,

x̄ ∈ )
m

jG1
G(yj ).

Therefore, {G(y)}y ∈ K has the finite intersection property and the proof is
finished. �

Remark 2.1.

(a) Theorem 2.1 can be seen as an extension of Theorem 3.1 in Ref.
36 for vector-valued functions.

(b) In Theorem 2.1, X need not be Hausdorff.
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3. Variational Principles

Extending the terminology of Auchmuty (Ref. 28) and of Blum and
Oettli (Ref. 31), we say that a variational principle holds for the VEP (1) if
there exists a set-valued map F: K →→ Y, depending on the data of the VEP
but not on its solution set, such that the solution set of the VEP coincides
with the solution set of the following vector optimization problem (VOP):

wAmin
x ∈ K

F (x); (2)

that is, to find all x0∈ K for which there exists y0∈ F (x0) such that

y0∈ wAminC F (K );

i.e.,

F (x0)∩wAminC F (K ) ≠ ∅ , where F (K )G*
x ∈ K

F (x).

For the existence of a solution and other theoretical work on the VOP (2),
we refer to Refs. 37–41 and references therein.

Let h: KBK→Y be a bifunction such that:

(i) h(x, x)G0, for all x ∈ K,
(ii) h(x, y)H0, for all x≠y, x, y ∈ K.

Next, let us consider the following VEP associated to the function fCh:
find x0∈ K such that

f (x0, y)Ch(x0, y)F� 0, for all y ∈ K. (3)

We denote by S the solution set of the VEP (3). The existence of a solution
to the VEP (3) has been investigated by Ansari (Ref. 20), by Bianchi et al.
(Ref. 22), and by Tan and Tinh (Ref. 27). To obtain the equivalence of P
and S, we need the following additional condition on h:

(iii) for any x ∈ K, y ∈ K, and α ∈ [0, 1], the function τ (α )G
h(x, α yC(1Aα )x) is homogenous with a degree σH1; i.e.,
τ (α )Gα στ (1).

Proposition 3.1. Suppose that f (x, · ) is convex for each x ∈ K and that
h satisfies (i)–(iii). Then, PGS.

Proof. Suppose that x0 solves the VEP (1). If x0∉ S, then there is y ∈
K such that

f (x0, y)Ch(x0, y)F0,
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and hence,

f (x0, y)F−h(x0, y)F0,

a contradiction.
Suppose that x0 solves the VEP (3). For contradiction, assume that

x0∉ P. Then, there is y ∈ K such that f (x0, y)F0. Set

yαGα yC(1Aα )x0.

For each α ∈ (0, 1), we have

f (x0, yα )Ch(x0, yα )

⁄α f (x0, y)C(1Aα ) f (x0, x0)Cα σh(x0, y)

Gα f (x0, y)Cα σh(x0, y).

Note that there exists α ′ ∈ (0, 1), such that

f (x0, y)Cα σA1h(x0, y)F0,

when α ∈ (0, α ′ ). It follows that

f (x0, yα )Ch(x0, yα )⁄α ( f (x0, y)Cα σA1h(x0, y))F0,

a contradiction, since yα ∈ K. �

Combining Theorem 2.1 and Proposition 3.1, we have the following
existence result for a solution to the VEP (3).

Theorem 3.1. Let the assumptions of Theorem 2.1 and Proposition
3.1 hold. Then, there exists a solution to the VEP (3).

Remark 3.1. In Banach spaces, it suffices to suppose that
��τ (α )��⁄α σ ��τ (1)��.

In order to formulate our variational principle, we define a point-to-
set map G: K →→ Y as follows:

G(x)_wAmin{ f (x, y)Ch(x, y) �y ∈ K},

where h is the same as defined above and can be termed a perturbation
bifunction; we associate to the VEP (1) the following VOP for a point-to-
set map:

wAmax
x ∈ K

G(x); (4)
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that is, to find all x0∈ K for which there exists y0∈ G(x0) such that

y0∈ wAmax
C

G(x);

i.e.,

G(x0)∩wAmax
C

G(K )≠∅ , where G(K )G*
x ∈ K

G(x).

We denote by Q the solution set of the VOP (4).
Using Theorem 3.1 from Ref. 32 with fGfCh, we obtain the following

result.

Proposition 3.2.

(i) x0∈ K is a solution of the VEP (3) if and only if 0 ∈ G(x0).
(ii) S ⊆ Q.

Now, by combining Propositions 3.1 and 3.2, we obtain the following
result.

Theorem 3.2. Let the assumptions of Proposition 3.1 hold. Then:

(i) x̄ ∈ K is a solution of the VEP (1) if and only if 0 ∈ G(x̄).
(ii) P ⊆ Q.

Now, we consider another VOP whose solution set coincides with the
solution set of the VEP. Let Y be a locally convex space; then, we can define
the dual cone C* to C. Since int C≠∅ and C≠Y, we have C*≠{0}; also, C*
has a weakly* compact base; i.e., there exists B ⊆ C*, B is convex, weakly*
compact, such that 0 ∉ B and C*G*t¤0 tB. We fix such a base and set

σ(u)_max
t ∈ B

(t, u), for all u ∈ Y;

see Ref 25. Then, for all u ∈ Y,

uF0 ⇔ σ(u)F0,

u⁄0 ⇔ σ(u)⁄0,

uF� 0 ⇔ σ(u)¤0,

u⁄� 0 ⇔ σ(u)H0.



JOTA: VOL. 110, NO. 3, SEPTEMBER 2001 489

In order to formulate our second variational principle, we define the
set-valued maps Z: K →→ K and Φ: K →→ Y as follows:

Z(x)_{y ∈ K �σ( f (x, y)Ch(x, y))⁄σ( f (x, z)Ch(x, z)), ∀ z ∈ K},

Φ(x)_ f (x, Z(x))Ch(x, Z(x)).

Now, we define the following VOP for a set-valued map:

max
x ∈ K

Φ(x); (5)

that is, to find all x0∈ K for which there exists y0∈Φ (x0) such that y0∈
maxC Φ(K ): i.e.,

Φ(x0)∩ maxC Φ(K )≠∅ .

We denote by R the solution set of problem (5).
Applying Theorem 3.2 from Ref. 32 with fGfCh, we obtain the follow-

ing result.

Proposition 3.3.

(i) x0∈ K is a solution of the VEP (3) if and only if 0 ∈Φ (x0).
(ii) If the solution of the VEP (3) is nonempty, then SGR.

By combining Propositions 3.1 and 3.3, we have the following result.

Theorem 3.3. Let the assumptions of Proposition 3.1 hold. Then:
(i) x̄ ∈ K is a solution of the VEP (1) if and only if 0 ∈Φ (x̄).
(ii) If the solution set of the VEP (1) is nonempty, then PGR.
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