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Abstract. In this paper, we introduce the system of generalized vector equilibrium problems which
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1. Introduction

Recently the generalized vector equilibrium problem (in short, GVEP) has been
studied in (Ansari et al., 1997, 2001; Oettli 1997; Oettli and Schläger, 1998a, b;
Ansari and Yao, 1999a; Konnov and Yao, 1999; Song, 2000). It includes as spe-
cial cases generalized implicit vector variational inequality problems, generalized
vector variational and variational-like inequality problems and vector equilibrium
problems. For further details on generalized vector variational and variational-
like inequality problems and vector equilibrium problems, we refer to (Lee et al.,
1996b; Bianchi et al., 1997; Oettli, 1997; Hadjisavvas and Schaible, 1998a,b; Tan
and Tinh, 1998; Giannessi, 2000) and references therein.

Very recently, the system of vector equilibrium problems (in short, SVEP), a
family of equilibrium problems for vector-valued bifunctions defined on a product
set, was introduced in (Ansari et al., 2000). The (SVEP) contains as special cases
the system of equilibrium problems, the system of variational inequality problems
(Ansari and Yao, 1999b), the system of vector variational inequality problems,
the system of vector optimization problems and the Nash equilibrium problem for
vector-valued functions.

In this paper, we introduce the system of generalized vector equilibrium prob-
lems (in short, SGVEP) which contains the system of generalized implicit vector
variational inequality problems, the system of generalized vector variational and
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variational-like inequality problems and (SVEP). We establish some existence res-
ults for a solution of the (SGVEP) using a special case of a maximal element
theorem for a family of multivalued maps due to Deguire et al. (1999). We also
derive some existence results for a solution of the system of generalized implicit
vector variational inequality problems, the system of generalized vector variational
and variational-like inequality problems and (SVEP). As an application, we give
some existence results for a solution of a more general Nash equilibrium problem
for vector-valued functions.

2. Formulations and preliminaries

Let I be an index set, and for each i ∈ I , let Xi be a Hausdorff topological
vector space. Consider a family of nonempty convex subsets {Ki}i∈I with Ki in
Xi . Throughout this paper, K = ∏

i∈I Ki and X = ∏
i∈I Xi . For each i ∈ I ,

let Yi be a topological vector space and let Ci : K → �(Yi) be a multivalued
map such that for each x ∈ K, Ci(x) is a proper, closed and convex cone with int
Ci(x) �= ∅, where int Ci and �(Yi) denote the interior of Ci and the family of all
nonempty subsets of Yi , respectively. For each i ∈ I , let Fi : K ×Ki → �(Yi) be
a multivalued bifunction. We consider the following system of generalized vector
equilibrium problems (in short, SGVEP) which is to find x̄ ∈ K such that for each
i ∈ I ,

Fi(x̄, yi) �⊆ −intCi(x̄), for all yi ∈ Ki.
If the index set I is a singleton, then the (SGVEP) reduces to a generalized vec-
tor equilibrium problem studied in (Oettli and Schläger, 1998b; Ansari and Yao,
1999a; Konnov and Yao, 1999; Ansari et al., 2001) which contains generalized
implicit vector variational inequality problems (Lee and Kum, 2000), generalized
vector variational and variational-like inequality problems and vector equilibrium
problems as special cases; see for example (Lee et al., 1996b; Bianchi et al., 1997;
Oettli, 1997; Hadjisavvas and Schaible, 1998a,b; Tan and Tinh, 1998; Giannessi,
2000) and references therein.

EXAMPLES OF (SGVEP):

For each i ∈ I , we denote by L(Xi, Yi) the space of the continuous linear
operators from Xi into Yi . Let Di be a nonempty subset of L(Xi, Yi). For each
i ∈ I , let Ti : K → �(Di) be a multivalued map.
(1) The System of Generalized Implicit Vector Variational Inequality Problems (in

short, SGIVVIP):
For each i ∈ I , let ψi : Di × Ki × Ki → Yi be a vector-valued map. The
(SGIVVIP) is to find x̄ ∈ K such that for each i ∈ I ,

∀yi ∈ Ki, ∃ūi ∈ Ti(x̄) : ψi(ūi , x̄i , yi) /∈ −intCi(x̄).
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Setting for each i ∈ I ,

Fi(x, yi) = ψi(Ti(x), xi , yi) = {ψi(ui, xi, yi) : ui ∈ Ti(x)},
the (SGVEP) coincides with the (SGIVVIP).
For Yi = R and Ci(x) = R− for all x ∈ K and for each i ∈ I , the (SGIVVIP)
is called the system of generalized implicit variational inequality problems
considered and studied in (Ansari and Yao, 2000b).
If the index set I is a singleton, then the (SGIVVIP) reduces to the generalized
implicit vector variational inequality problem considered and studied in (Lee
and Kum, 2000).
The (SGIVVIP) contains the following problems as special cases:
(i) For each i ∈ I , let ηi : Ki ×Ki → Xi be a bifunction. If for each i ∈ I ,

ψi(Ti(x), xi , yi) = {〈ui, ηi(yi, xi)〉 : ui ∈ Ti(x)},
then the (SGIVVIP) reduces to the system of generalized vector variational-
like inequality problems (in short, SGVVLIP) which is to find x̄ ∈ K such
that for each i ∈ I ,

∀yi ∈ Ki, ∃ūi ∈ Ti(x̄) : 〈ūi , ηi(yi, x̄i )〉 /∈ −intCi(x̄),

where 〈si, xi〉 denotes the evaluation of si ∈ L(Xi, Yi) at xi ∈ Xi .
For Yi = R and Ci(x) = R+ for all x ∈ K and for each i ∈ I , this
problem is studied in (Ansari and Yao, 2000b) with application to the Nash
equilibrium problem (Nash, 1951) for nonconvex and nondifferentiable
functions.
In the case where the index set I is a singleton, this problem is considered
and studied in (Giannessi, 2000) and references therein where it is used as
a tool to prove the existence of a solution to vector optimization problems
for nondifferentiable and nonconvex functions; see for example (Lee et
al., 1996a; Ansari and Yao, 2000a) and the references therein.

(ii) If for each i ∈ I ,

ψi(Ti(x), xi , yi) = 〈Ti(x), yi − xi〉 = {〈ui, yi − xi〉 : ui ∈ Ti(x)},
then the (SGIVVIP) reduces to the system of generalized vector vari-
ational inequality problems (in short, SGVVIP) which is to find x̄ ∈ K

such that for each i ∈ I ,

∀yi ∈ Ki, ∃ūi ∈ Ti(x̄) : 〈ūi , yi − x̄i〉 /∈ −intCi(x̄).

If the index set I is a singleton, then the (SGVVIP) is studied in (Daniilidis
and Hadjisavvas, 1996; Konnov and Yao, 1997; Hadjisavvas and Schaible,
1998b; Giannessi, 2000) and references therein with further applications
in vector optimization theory. When Ci(x) = R+ and Yi = R, for each
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i ∈ I and for all x ∈ K, the (SGVVIP) is studied by Ansari and Yao
(2000b) and Deguire et al. (1999), and used as a tool to find the solution of
the Nash equilibrium problem for convex but nondifferentiable functions.

(2) The System of Vector Equilibrium Problems (in short, SVEP): for each i ∈ I ,
let Fi be a single-valued map. Then the (SGVEP) is equivalent to the following
system of vector equilibrium problems (in short, SVEP), introduced and studied
in (Ansari et al., 2000) with applications to the system of vector variational
inequality problems and to the system of vector optimization problems which
includes the Nash equilibrium problem for vector-valued functions as a special
case:

(SVEP)

{
find x̄ ∈ K such that for each i ∈ I,
Fi(x̄, yi) /∈ −intCi(x̄) for all yi ∈ Ki.

The (SVEP) contains the system of vector variational inequality problems as
a special case, which describes a variety of important equilibrium models; for
details see (Ansari et al., 2000) and the references therein.
Further, consider the following problem. For each i ∈ I , let ϕi : K → Yi be a
vector-valued function and let Ki = ∏

j∈I, j �=i Kj and we write K = Ki ×Ki .
For x ∈ K, xi denotes the projection of x onto Ki and hence we can write
x = (xi, xi). If for each i ∈ I ,

Fi(x, yi) = ϕi(x
i, yi)− ϕi(x),

then the (SVEP) is equivalent to the following Nash equilibrium problem for
vector-valued functions: find x̄ ∈ K such that for each i ∈ I ,

ϕi(x̄
i , yi)− ϕi(x̄) /∈ −intCi(x̄) for all yi ∈ Ki.

It is considered and studied by Tan and Tinh (1998), but for a finite index set I
and Ci(x) = Ci for all x ∈ K. For a finite index set I and Ci(x) = C(x) for
each i ∈ I , this problem is also analyzed in (Lee et al., 1996b).

Now we mention some definitions and a result which will be used in the sequel.

DEFINITION 1. (Luc, 1989; Bianchi et al., 1997) Let W be a topological vector
space and Z be another topological vector space with a proper, closed and convex
cone P . Let M be a nonempty convex subset of W . A function φ : M → Z is
called P -quasiconvex if, for all α ∈ Z, the set {x ∈ M : φ(x) − α ∈ −P } is
convex.

REMARK 1. If φ is P -quasiconvex, then the set {x ∈ M : φ(x)− α ∈ −int P } is
also convex.

DEFINITION 2. (Berge, 1963) A multivalued map T : W → �(Z) is called
upper semi-continuous on W if T has compact values and for each x0 ∈ W and for
any open set V in Z containing T (x0) there exists an open neighborhood U of x0

in W such that T (x) ⊆ V for all x ∈ U .
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In the next section we shall use the following particular form of a maximal
element theorem for a family of multivalued maps due to Deguire et al. (1999,
Theorem 7).

Let W and Z be topological vector spaces. We recall that a point x̄ ∈ W is said
to be a maximal element of a multivalued map F : W → �(Z)∪ {∅} if F(x̄) = ∅.

THEOREM 1. (Deguire et al., 1999) Let {Ki}i∈I be a family of nonempty convex
subsets where each Ki is contained in a Hausdorff topological vector space Xi .
For each i ∈ I , let Si : K → �(Ki) ∪ {∅} be a multivalued map such that
(i) for each x ∈ K, Si(x) is convex,
(ii) for each x ∈ K, xi /∈ Si(x), where xi is the ith component of x,
(iii) for each yi ∈ Ki , S−1

i (yi) is open in K.
Suppose that there exist a nonempty compact subset N of K and a nonempty
compact convex subset Bi of Ki for each i ∈ I such that for each x ∈ K \ N
there exists i ∈ I satisfying Si(x) ∩ Bi �= ∅. Then there exists x̄ ∈ K such that
Si(x̄) = ∅ for all i ∈ I .

3. Existence results

In this section, we first establish some existence results for a solution of the (SGVEP).
Then we derive existence results for a solution of the (SGIVVIP), (SGVVLIP),
(SGVVIP) and (SVEP).

DEFINITION 3. (Ansari and Yao, 1999a) Let W and Z be topological vector
spaces and M a nonempty convex subset of W and let P : M → �(Z) be a
multivalued map such that for each x ∈ M, P(x) is a closed, convex cone with
nonempty interior. A multivalued bifunction F : M ×M → �(Z) ∪ {∅} is called
P(x)-quasiconvex-like if for all x, y1, y2 ∈ M and t ∈ [0, 1], we have either

F(x, ty1 + (1 − t)y2) ⊆ F(x, y1)− P(x),

or

F(x, ty1 + (1 − t)y2) ⊆ F(x, y2)− P(x).

THEOREM 2. For each i ∈ I , let Ki be a nonempty convex subset of a Hausdorff
topological vector space Xi and let Yi be a topological vector space. For each
i ∈ I , let Fi : K × Ki → �(Yi) be a multivalued bifunction. For each i ∈ I ,
assume that
(i) Ci : K → �(Yi) is a multivalued map such that for each x ∈ K, Ci(x) is a

proper, closed and convex cone in Yi with intCi(x) �= ∅;
(ii) for all x ∈ K, Fi(x, xi) �⊆ −intCi(x), where xi is the ith component of x;
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(iii) for all x ∈ K, the set {yi ∈ Ki : Fi(x, yi) ⊆ −intCi(x)} is convex;
(iv) for all yi ∈ Ki , the set {x ∈ K : Fi(x, yi) �⊆ −intCi(x)} is closed in K;
(v) there exist a nonempty compact subset N of K and a nonempty compact con-

vex subset Bi of Ki for each i ∈ I such that for each x ∈ K \ N there exist
i ∈ I and ỹi ∈ Bi such that Fi(x, ỹi ) ⊆ −intCi(x).

Then the (SGVEP) has a solution.
Proof. For each i ∈ I , we define a multivalued map Si : K → �(Ki) ∪ {∅} by

Si(x) = {yi ∈ Ki : Fi(x, yi) ⊆ −intCi(x)} for all x ∈ K.
By condition (iii) for each i ∈ I and for all x ∈ K, Si(x) is convex. Condition (ii)
implies that for all x ∈ K, xi /∈ Si(x).

By condition (iv) for each i ∈ I and for all yi ∈ Ki , S
−1
i (yi) is open in K.

By (v), for each x ∈ K \ N there exists i ∈ I satisfying Si(x) ∩ Bi �= ∅. Thus
all conditions of Theorem 1 are satisfied, and hence there exists x̄ ∈ N such that
Si(x̄) = ∅ for all i ∈ I , that is, for each i ∈ I ,

Fi(x̄, yi) �⊆ −intCi(x̄), for all yi ∈ Ki.
Hence the result follows.

THEOREM 3. For each i ∈ I , let Ki, Xi, Yi, Ci and Fi be the same as in
Theorem 2. For each i ∈ I , assume that
(i) Qi : K → �(Yi) is a multivalued map defined as Qi(x) = Yi \ {−intCi(x)}

for all x ∈ K such that its graph is closed in K × Yi;
(ii) for all x ∈ K, Fi(x, xi) �⊆ −intCi(x), where xi is the ith component of x;
(iii) Fi is Ci(x)-quasiconvex-like;
(iv) for all yi ∈ Ki , the multivalued map x �→ Fi(x, yi) is upper semicontinuous

on K;
(v) there exist a nonempty compact subset N of K and a nonempty compact con-

vex subset Bi of Ki for each i ∈ I such that for each x ∈ K \ N there exist
i ∈ I and ỹi ∈ Bi such that Fi(x, ỹi ) ⊆ −intCi(x).

Then the (SGVEP) has a solution.
Proof. For each i ∈ I , let Si be the same as in the proof of Theorem 2. Then by

(iii), for each i ∈ I and for all x ∈ K, Si(x) is convex (see for example the proof
of Theorem 2.1 in Ansari and Yao (1999a)).

By using conditions (i) and (iv), from the proof of Theorem 2.1 in Ansari and
Yao (1999a), we see that the set {x ∈ K : Fi(x, yi) �⊆ −intCi(x)} is closed in K.
Then the result follows from the proof of Theorem 2.

DEFINITION 4. (Ansari et al., 2001) Let W and Z be topological vector spaces,
M a nonempty convex subset of W and D a nonempty subset of L(W,Z). Let
T : M → �(D) and P : M → �(Z) be multivalued maps such that for each
x ∈ M, P(x) is a closed, convex cone with nonempty interior. A function ψ :
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D × M × M → Z is called P(x)-quasiconvex-like if for all x, y1, y2 ∈ M and
t ∈ [0, 1], we have either for all u ∈ T (x),

ψ(u, x, ty1 + (1 − t)y2) ∈ ψ(u, x, y1)− P(x),

or

ψ(u, x, ty1 + (1 − t)y2) ∈ ψ(u, x, y2)− P(x).

By using Theorems 2 and 3, we derive the following existence result for a
solution of the (SGIVVIP).

COROLLARY 1. For each i ∈ I , let Ki, Xi, Yi, Ci and Qi be the same as in
Theorem 3 and letDi be a nonempty subset of L(Xi, Yi). For each i ∈ I , Ti : K →
�(Di) be an upper semicontinuous multivalued map and ψi : Di ×Ki ×Ki → Yi
be a vector-valued map. For each i ∈ I , assume that
(i) for all x ∈ K and ui ∈ Ti(x), ψi(ui, xi, xi) /∈ −intCi(x), where xi is the ith

component of x;
(ii) ψi is Ci(x)-quasiconvex-like;
(iii) for all yi ∈ Ki , the map (ui, xi) �→ ψi(ui, xi, yi ) is upper semicontinuous on

Di ×Ki;
(iv) there exist a nonempty compact subset N of K and a nonempty compact con-

vex subset Bi of Ki for each i ∈ I such that for each x ∈ K \ N there exist
i ∈ I and ỹi ∈ Bi such that ψi(ui, xi, ỹi ) ∈ −intCi(x) for all ui ∈ Ti(x).

Then the (SGIVVIP) has a solution.
Proof. For each i ∈ I , we set

Fi(x, yi) = ψi(Ti(x), xi , yi) = {ψi(ui, xi, yi) : ui ∈ Ti(x)}
for all x ∈ K and yi ∈ Ki. Then, all the conditions of Theorem 2 can easily be
verified except for condition (iv). Hence we only need to prove that the set

A = {x ∈ K : ∃ui ∈ Ti(x) s.t. ψi(ui, xi, yi) /∈ −intCi(x)}
is closed in K for all yi ∈ Ki . We prove it for a fixed i.

Let {xλ} be a net in A such that xλ converges to x∗ ∈ K. Then

∃uiλ ∈ Ti(xλ) s.t. ψi(uiλ, xiλ , yi) /∈ −intCi(xλ),

where xiλ is the ith component of xλ, and therefore

ψi(uiλ, xiλ , yi) ∈ Qi(xλ).

Let F = {xλ} ∪ {x∗}. Then F is compact and uiλ ∈ Ti(F ) which is compact.
Therefore uiλ has a convergent subnet with limit ui∗ . Without loss of generality, we
may assume that {uiλ} converges to ui∗ . Then by upper semicontinuity of T , we
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have ui∗ ∈ Ti(x∗). Since ψi(., ., yi) is continuous and the graph ofQi is closed, we
have

ψi(uiλ, xiλ , yi) converges to ψi(ui∗ , xi∗ , yi) ∈ Qi(x
∗),

and hence ψi(ui∗ , xi∗ , yi) /∈ −intCi(x∗). Therefore, x∗ ∈ A and thus A is closed in
K. This completes the proof.

REMARK 2. Corollary 1 strengthens Theorem 3.2 in Lee and Kum (2000) in
several ways since our assumptions are weaker.

Let W and Z be Hausdorff topological vector spaces and σ be the family of
all bounded subsets of W whose union is total in W , that is, the linear hull of⋃{U : U ∈ σ } is dense in W . Let B be a neighborhood base of 0 in Z. When U
runs through σ , V through B, the family

M(U,V ) = {ξ ∈ L(W,Z) : ∪x∈U〈ξ, x〉 ⊆ V }
is a neighborhood base of 0 in L(W,Z) for a unique translation-invariant topology,
called the topology of uniform convergence on the sets U ∈ σ , or, briefly, the
σ -topology (see Schaefer (1971), pp. 79–80).

In order to derive existence results for solutions of the (SGVVLIP) and (SGV-
VIP) from Corollary 1, we need the following useful result due to Ding and Taraf-
dar (2000).

LEMMA 1. LetW andZ be real Hausdorff topological vector spaces and L(W,Z)
be the topological vector space under the σ -topology. Then, the bilinear mapping
〈., .〉 : L(W,Z)×W → Z is continuous on L(W,Z) ×W .

COROLLARY 2. For each i ∈ I , let Xi and Yi be Hausdorff topological vector
spaces and let Ki, Ci, Qi, Di and Ti be the same as in Corollary 1. For each i ∈
I , letL(Xi, Yi) be equipped with the σ -topology. For each i ∈ I , let ηi : Ki×Ki →
Xi be affine in the first argument and continuous in the second argument such that
ηi(xi, xi) = 0 for all xi ∈ Ki . Assume that there exist a nonempty compact subset
N ofK and a nonempty compact convex subset Bi ofKi for each i ∈ I such that for
each x ∈ K \N there exist i ∈ I and ỹi ∈ Bi such that 〈ui, ηi(ỹi , xi)〉 ∈ −intCi(x)
for all ui ∈ Ti(x). Then the (SGVVLIP) has a solution.

COROLLARY 3. For each i ∈ I , let Ki, Xi, Yi, Ci, Qi, Di and Ti be the same
as in Corollary 2 and let L(Xi, Yi) be equipped with the σ -topology. Assume that
there exist a nonempty compact subset N of K and a nonempty compact convex
subset Bi of Ki for each i ∈ I such that for each x ∈ K \ N there exist i ∈ I and
ỹi ∈ Bi such that 〈ui, ỹi − xi〉 ∈ −intCi(x) for all ui ∈ Ti(x). Then the (SGVVIP)
has a solution.
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DEFINITION 5. (Ansari and Yao, 1999a) Let W and Z be topological vector
spaces and M a nonempty convex subset of W and let P : M → �(Z) be a
multivalued map such that for each x ∈ M, P(x) is a closed, convex cone with
nonempty interior. A bifunction f : M ×M → Z is called P(x)-quasiconvex-like
if for all x, y1, y2 ∈ M and t ∈ [0, 1], we have either

f (x, ty1 + (1 − t)y2) ∈ f (x, y1)− P(x),

or

f (x, ty1 + (1 − t)y2) ∈ f (x, y2)− P(x).

From Theorem 2, we derive the following existence result for a solution of the
(SVEP).

COROLLARY 4. For each i ∈ I , let Ki, Xi, Yi, Ci and Qi be the same as in
Theorem 3. For each i ∈ I , let fi : K ×Ki → Yi be a bifunction. For each i ∈ I ,
assume that
(i) for all x ∈ K, fi(x, xi ) /∈ −intCi(x) where xi is the ith component of x;
(ii) fi is Ci(x)-quasiconvex-like;
(iii) for all yi ∈ Ki , the map x �→ fi(x, yi ) is continuous on K,
(iv) there exist a nonempty compact subset N of K and a nonempty compact con-

vex subset Bi of Ki for each i ∈ I such that for each x ∈ K \ N there exist
i ∈ I and ỹi ∈ Bi such that fi(x, ỹi ) ∈ −intCi(x).

Then the (SVEP) has a solution.

REMARK 3. Corollaries 1, 2 and 3 improve Theorem 2.2 and Corollaries 2.2
and 2.3 in Ansari and Yao (2000b), respectively, and extend them to vector-valued
functions.

4. An application

Throughout this section, unless otherwise specified, we assume a finite index set
I = {1, . . . , n}. For each i ∈ I , Xi and Yi are finite dimensional Euclidean spaces
R
pi and R

qi , respectively. Let {Ki}i∈I be a family of nonempty convex subsets with
each Ki in Xi . For each i ∈ I , let Ci : K → �(Yi) be a multivalued map such that
for all x ∈ K, Ci(x) is a proper, closed and convex cone with intCi(x) �= ∅ and
R
qi+ ⊆ Ci(x). For each i ∈ I , let ϕi : K → Yi be a given vector-valued function.

We consider the following system of vector optimization problems (in short, SVOP)
which is to find x̄ ∈ K such that for each i ∈ I ,

ϕi(y)− ϕi(x̄) /∈ −intCi(x̄) for all y ∈ K,
where ϕi(x) = (ϕi1(x), ϕi2(x), . . . , ϕiqi (x)) and for each l ∈ L = {1, . . . , qi},
ϕil : K → R is a function.
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We can choose y ∈ K in such a way that yi = x̄i . Then the (SVOP) reduces to
the Nash equilibrium problem for vector-valued functions which is to find x̄ ∈ K

such that for each i ∈ I ,

ϕi(x̄
i , yi)− ϕi(x̄) /∈ −intCi(x̄) for all yi ∈ Ki.

It is clear that every solution of the (SVOP) is also a solution of the Nash
equilibrium problem for vector-valued functions, but the converse need not be true.

Now we recall some definitions.

DEFINITION 6. A real-valued function f : R
p → R is said to be locally Lipschitz

if for any z ∈ R
p there exist a neighborhood N(z) of z and a positive constant k

such that

|f (x)− f (y)| � k||x − y|| for all x, y ∈ N(z).
The Clarke generalized directional derivative (Clarke, 1990) of a locally Lipschitz

function f at x in the direction d denoted by f 0(x; d) is

f 0(x; d) = lim
y→x
t↓0

sup
f (y + td)− f (y)

t
.

The Clarke generalized gradient (Clarke, 1990)of a locally Lipschitz function
f at x is defined as

∂f (x) = {ξ ∈ R
p : f 0(x; d) � 〈ξ, d〉 for all d ∈ R

p}.
If f is convex, then the Clarke generalized gradient coincides with the subdif-

ferential of f in the sense of convex analysis (Rockafellar, 1970).
The generalized invex function was introduced by Craven (1986) as a general-

ization of invex functions (Hanson, 1982).

DEFINITION 7. A locally Lipschitz function f : R
p → R is said to be general-

ized invex at x w.r.t. a given function η : R
p × R

p → R
p if

f (y)− f (x) � 〈ξ, η(y, x)〉 for all ξ ∈ ∂f (x) and y ∈ R
p.

For each i ∈ I , let φi : K → R be a locally Lipschitz function and let x ∈
K, xj ∈ Kj . Following Clarke (1990), the generalized directional derivative at xj
in the direction dj ∈ Kj of the function φi(x1, . . . , xj−1, ·, xj+1, . . . , xn) denoted
by φ0

ij (x; dj ) is

φ0
ij (x; dj ) = lim

yj→xj
t↓0

sup
1

t
{φi(x1, . . . , xj−1, yj + tdj , xj+1, . . . , xn)

−φi(x1, . . . , xj−1, yj , xj+1, . . . , xn)}.
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The partial generalized gradient (Clarke, 1990) of the function
φi(x1, . . . , xj−1, ·, xj+1, . . . , xn) at xj is defined as follows:

∂jφi(x) = {ξj ∈ Xj : φ0
ij (x; dj ) � 〈ξj , dj 〉 for all dj ∈ Kj }.

LEMMA 2. (Clarke, 1990) For each i ∈ I , let φi : K → R be locally Lipschitz.
Then for each i ∈ I , the multivalued map ∂iφi is upper semicontinuous.

DEFINITION 8. For each i ∈ I , φi : K → R is called generalized invex at x
w.r.t. a given function ηi : Ki ×Ki → R

pi if

φi(y)− φi(x) � 〈ξi, ηi(yi, xi)〉 for all ξi ∈ ∂iφi(x) and y ∈ K.
PROPOSITION 1. For each i ∈ I and for all l ∈ L, let ϕil : K → R be
generalized invex w.r.t. ηil : Ki × Ki → Xi . Then any solution of the (SGVVLIP)
is a solution of the (SVOP) with Ti(x) = ∂iϕi(x) for each i ∈ I and for all x ∈ K
where ∂iϕi(x) = (∂iϕi1(x), ∂iϕi2(x), . . . , ∂iϕiqi (x)) ∈ R

pi×qi .
Proof. For the sake of simplicity, we denote by ϕi(x) = (ϕi1(x), . . . , ϕiqi (x)) ∈

R
qi , ui = (ui1 , . . . , uiqi ) where uil ∈ ∂iϕil (x) for all l ∈ L, and

〈ui, ηi(yi, xi)〉 = (〈ui1 , ηi1(yi, xi)〉, . . . , 〈uiqi , ηiqi (yi, xi)〉) ∈ R
qi .

Assume that x̄ ∈ K is a solution of the (SGVVLIP). Then for each i ∈ I ,

∀yi ∈ Ki, ∃ūil ∈ ∂iϕil (x̄) for all l ∈ L such that

(〈ūi1 , ηi1(yi, x̄i )〉, . . . , 〈ūiqi , ηiqi (yi, x̄i )〉) /∈ −intCi(x̄).

We can rewrite this as

∀yi ∈ Ki, ∃ūi ∈ ∂iϕi(x̄) : 〈ūi , ηi(yi, x̄i )〉 /∈ −intCi(x̄). (1)

Since for each i ∈ I and for all l ∈ L, ϕil is generalized invex w.r.t. ηil , we have

ϕil (y)− ϕil (x̄) � 〈uil , ηil (yi, x̄i )〉 for all uil ∈ ∂iϕil (x̄) and y ∈ K,
that is, for each i ∈ I

ϕi(y)− ϕi(x̄) � 〈ui, ηi(yi, x̄i )〉 for all ui ∈ ∂iϕi(x̄) and y ∈ K.
Therefore for each i ∈ I and for all ui ∈ ∂iϕi(x̄), we have

ϕi(y)− ϕi(x̄) ∈ 〈ūi , ηi(yi, x̄i )〉 + R
qi+

⊆ 〈ūi , ηi(yi, x̄i )〉 + intCi(x̄). (2)

From (1) and (2), we have ϕi(y) − ϕi(x̄) /∈ −intCi(x̄). Hence x̄ ∈ K is a solution
of the (SVOP).
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THEOREM 4. For each i ∈ I and for all l ∈ L, let ϕil : K → R be generalized
invex w.r.t. ηil : Ki × Ki → Xi such that ηil is affine in the first argument,
continuous in the second argument and ηil (xi, xi) = 0 for all xi ∈ Ki . Assume
that there exists r > 0 such that for all x ∈ K, ||x|| > r, there exist i ∈ I and
ỹi ∈ Ki with ||ỹi ||i � r satisfying

〈ui, ηi(xi, ỹi )〉 ∈ −intCi(x) for all ui ∈ ∂iϕi(x̄),
where || · || and || · ||i denote the norms onX and Xi , respectively. Then the (SVOP)
has a solution.

Proof. For each i ∈ I and for all x ∈ K, Ti(x) = ∂iϕi(x) is an upper semi-
continuous multivalued map by Lemma 2. It is easy to check that all conditions of
Corollary 2 are satisfied. Hence from Corollary 2 and Proposition 1 it follows that
the (SVOP) has a solution.

REMARK 4. (a) Theorem 4 and its specialization to lower semicontinuous con-
vex functions improve Theorem 3.1 and Corollary 3.1 in Ansari and Yao (2000b),
respectively, and extend these to vector-valued functions.
(b) Existence results for (SVOP) were also obtained in Ansari et al. (2000).

When the index set I is not necessarily finite, we can derive from Corollary 4
the following existence result for a solution of the Nash equilibrium problem for
vector-valued functions.

THEOREM 5. For each i ∈ I , let Ki, Xi, Yi, Ci and Qi be the same as in
Theorem 3. For each i ∈ I , let ϕi : K → Yi be a function which is Ci(x)-
quasiconvex-like and continuous on K. For each i ∈ I , assume that there exist
a nonempty compact subset N of K and a nonempty compact convex subset Bi of
Ki for each i ∈ I such that for each x ∈ K \ N there exist i ∈ I and ỹi ∈ Bi
such that ϕi(xi , ỹi ) − ϕi(x) ∈ −intCi(x). Then the Nash equilibrium problem for
vector-valued functions has a solution.

Proof. For each i ∈ I , we set

Fi(x, yi) = ϕi(x
i, yi)− ϕi(x) for all x ∈ K, yi ∈ Ki.

Then it is easy to verify the conditions of Corollary 4.

REMARK 5. Theorem 5 strengthens Corollary 3.17 in Tan and Tinh (1998) in sev-
eral ways since our assumptions are weaker. Moreover it also generalizes Corollary
3.18 in Tan and Tinh (1998).
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