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Abstract

By using the recession method, we give some necessary and/or sufficient condition of solutions of
generalized vector equilibrium problems.
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1. Introduction and formulations

A mathematical formulation of many problems, for instance, vector variational inequal-
ity problem, vector complementarity problem, vector optimization problem, vector saddle
point problem, Nash equilibrium problem for vector-valued functions and fixed point prob-
lem, arise in mechanics, operations research, nonlinear analysis and game theory may be
stated in the following form:
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Given a nonempty set K in a real reflexive Banach space X and a vector-valued func-
tion F :K × K → Y , where Y is a real normed space with an ordered cone C, that is,
a proper, closed and convex cone such that intC �= ∅,

find x̄ ∈ K such that F(x̄, y) /∈ − intC, ∀y ∈ K, (1.1)

where intC denotes the interior of C.

Since (1.1) is equivalent to find an equilibrium point of a vector optimization problem,
it is known as vector equilibrium problem (for short, VEP) and it has been the focus of
attention of many researchers in the recent years; see, for example, [2,3,6,9,12,14,15,19]
and references therein.

Let 2Y be the family of all subsets of Y . There are several possible ways to generalize
VEP for a given multivalued map F :K × K → 2Y \ {∅}, for instance,

find x̄ ∈ K such that F(x̄, y) �⊆ − intC, ∀y ∈ K, (1.2)

and

find x̄ ∈ K such that F(x̄, y) ∩ (− intC) = ∅, ∀y ∈ K. (1.3)

The latter problem can also be written in the following form:

find x̄ ∈ K such that F(x̄, y) ⊆ Y \ (− intC), ∀y ∈ K.

These problems are called generalized vector equilibrium problems (for short, GVEP).
(1.2) is studied in [1,5,7,17] and references therein. While (1.3) is considered in [4]. Later,
it is also studied by Georgiev and Tanaka [13], see, also [20,21]. In most of the papers
appeared in the literature, the problem (1.2) is considered since it provides the weak for-
mulation of Stampacchia type generalized vector variational inequality problems (for short,
(SGVVIP)w). In the recent past, (SGVVIP)w is used as a tool to provide the existence of
a weak efficient solution1 of vector optimization problem (for short, VOP); see, for ex-
ample, [8] and references therein. However the strong formulation of Stampacchia type
generalized vector variational inequality problems (for short, (SGVVIP)s ) provides the
necessary and sufficient condition for a weak efficient solution of VOP; see, for exam-
ple, [10]. Moreover, (1.3) includes a more general form of generalized vector variational
inequality problems (for short, GGVVIP) which contains (SGVVIP)w and (SGVVIP)s .

It is clear that problem (1.3) is more stronger than problem (1.2) as every solution of
(1.3) is also a solution of (1.2).

The following problem which is closely related to GVEP (1.3) can be termed as dual
generalized vector equilibrium problem (for short, DGVEP):

find x̄ ∈ K such that F(y, x̄) ∩ (intC) = ∅, ∀y ∈ K. (1.4)

1 x ∈ K is a weak efficient solution of the following vector optimization problem:

min
x∈K

ϕ(x), where ϕ :K → Y

if and only if ϕ(y) − ϕ(x) /∈ − intC for all y ∈ K .
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We shall denote by Ep and Ed the solution set of GVEP (1.3) and DGVEP (1.4), respec-
tively.

We further consider the following strong formulation of GVEP:

find x̄ ∈ K such that F(x̄, y) ⊆ C, ∀y ∈ K, (1.5)

and its dual form:

find x̄ ∈ K such that F(y, x̄) ⊆ −C, ∀y ∈ K. (1.6)

Problems (1.5) and (1.6) shall be called the strong generalized vector equilibrium problem
(for short, SGVEP) and dual strong generalized vector equilibrium problem (for short,
DSGVEP), respectively.

The absolute solution2 of VOP can be found by using (1.5) and strong formulation
of GGVVIP. The solution set of problem (1.5) and (1.6) are denoted by Esp and Esd ,
respectively.

In most of the papers appeared in the literature on the existence theory of solutions of
VEP and GVEPs, either the set K is compact (in topological vector space setting)/bounded
(in reflexive Banach space setting) or some coercivity condition is assumed. In the recent
past, Flores-Bazán and Flores-Bazán [12] studied the existence of solutions of VEP under
the asymptotic analysis, where neither compactness of K nor any coercivity condition is
assumed. They gave some characterizations of nonemptiness of the solution set and also
presented several alternative necessary and/or sufficient conditions for the solution set to
be nonempty and compact.

In this paper, we extend the ideas of Flores-Bazán and Flores-Bazán [12] for GVEP. By
using recession method, we provide several alternative necessary and/or sufficient condi-
tions for the solution set of GVEP to be nonempty and bounded. In Section 2, preliminary
definitions, results and notations are given. Section 3 deals with the alternative necessary
and/or sufficient conditions for the solution set of GVEP to be nonempty and bounded.

2. Preliminaries

Throughout this paper X will be a real reflexive Banach space. For any given weakly
closed set K in X, we define the recession cone of K as the set

K∞ = {x ∈ X: ∃tn ↓ 0, ∃xn ∈ K, tnxn ⇀ x},
where “⇀” means convergence in the weak topology. We set ∅∞ = ∅.

In case K is also convex, it is known that

K∞ = {x ∈ X: ∃x0 ∈ K, x0 + tx ∈ K, ∀t > 0}.
This cone does not depend on x0 ∈ K .

We give some basic properties of recession cones in the following result which will be
used in the sequel.

2 x ∈ K is called absolute solution of VOP if and only if ϕ(y) − ϕ(x) ∈ C for all y ∈ K . It is clear that every
absolute solution is a weak efficient solution, see [16].



Q.H. Ansari, F. Flores-Bazán / J. Math. Anal. Appl. 321 (2006) 132–146 135
Proposition 2.1. The following holds:

(a) K1 ⊆ K2 implies K∞
1 ⊆ K∞

2 ;
(b) (K + x)∞ = K∞, ∀x ∈ X;
(c) let {Ki}i∈I be any family of nonempty sets in X, then(⋂

i∈I

Ki

)∞
⊂

⋂
i∈I

(Ki)
∞.

If, in addition,
⋂

i∈I Ki �= ∅ and each set Ki is closed and convex, then we obtain an
equality in the previous inclusion.

Definition 2.1. Let K be a nonempty convex subset of X. For a given closed convex cone
P of a real normed space Y , the multivalued map S :K → 2Y \ {∅} is called:

(i) P -convex if

αS(x) + (1 − α)S(y) ⊆ S
(
αx + (1 − α)y

) + P, ∀x, y ∈ K and ∀α ∈ [0,1];
(ii) properly P -quasiconvex if, ∀x, y ∈ K and ∀α ∈ ]0,1[,

S(x) ⊆ S
(
αx + (1 − α)y

) + P or S(y) ⊆ S
(
αx + (1 − α)y

) + P ;
(iii) explicitly δ-quasiconvex [17] if, ∀x, y ∈ K , ∀α ∈ ]0,1], we have either

S(x) ⊆ S
(
αx + (1 − α)y

) + P or S(y) ⊆ S
(
αx + (1 − α)y

) + P

and if (S(y) − S(x)) ∩ (− intP) �= ∅, we have

S(x) ⊆ S
(
αx + (1 − α)y

) + intP, ∀α ∈ ]0,1];
(iv) weakly lower semicontinuous at x ∈ K if, for any y ∈ S(x) and for any sequence

xn ∈ K converges weakly to x, there exists a sequence yn ∈ S(xn) converges strongly
to y.

S is weakly lower semicontinuous on K if, it is weakly lower semicontinuous at each point
of K .

3. Existence results for a solution of GVEP

For a nonempty subset A of a vector space, we denote by coA the convex hull of A.
The next abstract result is a generalization of [12, Theorem 3.1] for multivalued maps.

Theorem 3.1. Let K be a nonempty closed, convex and bounded set in X and let W be
any nonempty subset of Y . Let F :K × K → 2Y \ {∅} be a multivalued map satisfying the
following conditions:

(A0) F(x, x) ⊆ W , ∀x ∈ K ;
(A1) for all x, y ∈ K , F(x, y) ⊆ W implies F(y, x) ⊆ −W ;
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(A2) for all x ∈ K , the set {ξ ∈ K: F(x, ξ) ⊆ −W } is (sequentially) weakly closed;
(A3) for all x ∈ K , the set {ξ ∈ K: F(x, ξ) �⊆ W } is convex;
(A4) for all x, y ∈ K , F(ξ, x) ⊆ −W for all ξ ∈ ]x, y] implies F(x, y) ⊆ W , where ]x, y]

denotes the line segment joining x and y but not containing x.

Then, the solution set to the problem

find x̄ ∈ K such that F(x̄, y) ⊆ W, ∀y ∈ K

and that of the problem

find x̄ ∈ K such that F(y, x̄) ⊆ −W, ∀y ∈ K,

are nonempty, weakly closed and both coincide.

Proof. Although, it is similar to the proof of [12, Theorem 3.1], we present it for the
convenience of the readers.

We first find x̄ ∈ K such that

x̄ ∈
⋂
y∈K

{
x ∈ K: F(y, x) ⊆ −W

}
.

To that end, we shall use the famous Ky Fan lemma [11] which is a generalization of KKM
lemma (see, [22]). Set

G(y) = {
x ∈ K: F(y, x) ⊆ −W

}
.

Assumption (A2) implies that for each y ∈ K , G(y) is weakly closed and bounded,
and since K is weakly compact, G(y) is weakly compact. In order to apply the Fan
lemma, we need to prove that for any finite subset {y1, . . . , yk} of K , co{y1, . . . , yk} ⊆⋃k

i=1 G(yi). If y = ∑k
i=1 αiyi /∈ ⋃k

i=1 G(yi) for some αi � 0, i = 1, . . . , k,
∑k

i=1 αi = 1,
then y /∈ G(yi) for all i = 1, . . . , k. Thus for each i = 1, . . . , k, F(yi, y) �⊆ −W which im-
plies F(y, yi) �⊆ W by assumption (A1). Thus F(y, y) �⊆ W because of assumption (A3),
which contradicts assumption (A0). This proves that for any finite subset {y1, . . . , yk} of K ,
co{y1, . . . , yk} ⊆ ⋃k

i=1 G(yi). Hence by Fan–KKM lemma, there exists x̄ ∈ K such that
x̄ ∈ ⋂

y∈K G(y), i.e., F(y, x̄) ⊆ −W for all y ∈ K , in other words, the second problem has
a solution. By applying the assumption (A4), such a solution is also a solution to the first
problem (see, [5, the proof of Proposition 3.2]). Since every solution to the first problem
is a solution to the second problem by (A1), we deduce that both sets coincide. The weak
closedness is a consequence of (A2). �
Remark 3.1. A similar result to that of Theorem 3.1 is derived in [5] for problem (1.2) in
the setting of unbounded set K .

We now adapt the previous abstract result to our problem and we shall give simpler
verifiable conditions on F ensuring the validity of all assumptions imposed in Theorem 3.1.

The basic assumptions on F are listed in hypothesis (H1) below.
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Hypothesis (H1). The multivalued map F :K × K → 2Y \ {∅} is such that

(f0) for all x ∈ K , F(x, x) ⊆ l(C) := C ∩ (−C);
(f1) for all x, y ∈ K , F(x, y) ∩ (− intC) = ∅ implies F(y, x) ∩ intC = ∅;
(f2) for all x ∈ K , the mapping F(x, ·) :K → 2Y \ {∅} is C-convex;
(f3) for all x, y ∈ K , the set {ξ ∈ [x, y]: F(ξ, y) ∩ (− intC) = ∅} is closed. Here [x, y]

stands for the closed line segment joining x and y;
(f4) for all x ∈ K , F(x, ·) is weakly lower semicontinuous.

Remark 3.2.

(a) One can check immediately that the C-convexity of F(x, ·) implies that for all x ∈ K ,
the set{

ξ ∈ K: F(x, ξ) �⊆ Y \ (− intC)
}

is convex. Hence condition (A3) (with W = Y \ (− intC)) of Theorem 3.1 holds.
(b) It can be easily seen that the weakly lower semicontinuity of F(x, ·) asserts the (se-

quential) weak closedness of{
ξ ∈ K: F(x, ξ) ⊆ Y \ (− intC)

}
for all x ∈ K . Thus condition (A2) (with W = Y \ (− intC)) of Theorem 3.1 is satis-
fied.

(c) Assumptions (f0), (f2) and (f3) in hypothesis (H1) imply that, given any x ∈ K ,

0 ∈ F(y, x) + (
Y \ (− intC)

)
, ∀y ∈ K, implies

F(x, y) ∩ (− intC) = ∅, ∀y ∈ K. (3.1)

Hence condition (A4) (with W = Y \ (− intC)) of Theorem 3.1 holds.

Indeed, for every y ∈ K consider xt = x + t (y − x) for t ∈ ]0,1[. Clearly xt ∈ K . The
C-convexity of F(xt , ·) implies

tF (xt , y) + (1 − t)F (xt , x) ⊆ F(xt , xt ) + C ⊆ C.

Since 0 ∈ F(xt , x) + (Y \ (− intC)), there exists ξ(xt , x) ∈ F(xt , x) such that ξ(xt , x) /∈
intC. From a previous inclusion one has

tF (xt , y) ⊆ −(1 − t)ξ(xt , x) + C ⊆ (
Y \ (− intC)

) + C ⊆ Y \ (− intC).

It turns out that F(xt , y) ⊆ Y \ (− intC) or, equivalently, F(xt , y)∩ (− intC) = ∅. Letting
t ↓ 0, we obtain by assumption (f3), F(x, y) ∩ (− intC) = ∅. Since y was arbitrary, the
desired result is proved. �

The following result shows that (3.1) also holds if we replace the C-convexity of F(x, ·)
by the explicitly δ-quasiconvexity for each x ∈ K .

Proposition 3.1. Assume that the multivalued map F :K ×K → 2Y \ {∅} satisfies assump-
tions (f0) and (f3) such that F(x, ·) is explicitly δ-quasiconvex for each x ∈ K . Then (3.1)
holds.
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Proof. For a given x ∈ K , let

0 ∈ F(y, x) + (
Y \ (− intC)

)
, ∀y ∈ K. (3.2)

Suppose there exists y ∈ K such that F(x, y) ∩ (− intC) �= ∅. (f3) can be written, in an
equivalent way, as

(f3) for all x, y ∈ K , the set {ξ ∈ [x, y]: F(ξ, y) ∩ (− intC) �= ∅} is open (in [x, y]).

Since x ∈ {ξ ∈ [x, y]: F(ξ, y) ∩ (− intC) �= ∅} := M , there exists α ∈ ]0,1[ such that

z := x + α(y − x) = αy + (1 − α)x ∈ M,

that is,

z ∈ [x, y] and F(z, y) ∩ (− intC) �= ∅. (3.3)

Now by explicitly δ-quasiconvexity of F(z, ·), we have

F(z, y) ⊆ F(z, z) + C ⊆ C ⊆ W := Y \ (− intC)

which implies that

F(z, y) ∩ (− intC) = ∅,

a contradiction of (3.3). Therefore, we can only have

F(z, x) ⊆ F(z, z) + C ⊆ C ⊆ W,

that is,

F(z, x) ∩ (− intC) = ∅. (3.4)

Relations (3.3) and (3.4) imply[
F(z, y) − F(z, x)

] ∩ (− intC) �= ∅.

By explicitly δ-quasiconvexity of F(z, ·), we have

F(z, x) ⊆ F(z, z) + intC ⊆ C + intC ⊆ intC

which contradicts (3.2). Hence F(x, y) ⊆ Y \ (− intC),∀y ∈ K . �
The previous implication is related to a certain maximal pseudomonotonicity condition

already discussed by Oettli in [19] and Ansari et al. in [5].
In the same lines of reasoning as in [12], we introduce the following cones in order to

deal with the unbounded case, that is, when K is an unbounded set,

R0 :=
⋂
y∈K

{
v ∈ K∞: 0 ∈ F(y, z + λv) + W, ∀λ > 0,

∀z ∈ K such that F(y, z) ⊆ −C
}

and

R1 :=
⋂
y∈K

{
v ∈ K∞: 0 ∈ F(y, y + λv) + W, ∀λ > 0

}
,

where W = Y \ (− intC).
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We note that the sets R0 and R1 are nonempty (because of assumption (f0)) closed cone
but not necessarily convex. Clearly, R0 ⊂ R1.

Proposition 3.2. Let K be a nonempty closed convex subset of X and let (3.1) hold. Then

R11 :=
⋂
y∈K

{
v ∈ K∞: 0 ∈ F(y, y + λv) + (

Y \ (− intC)
)
, ∀λ > 0

}

⊂
⋂
y∈K

{
v ∈ K∞: F(y + λv, y) ∩ (− intC) = ∅, ∀λ > 0

}
.

Proof. It is straightforward. �
Remark 3.3. If F :K × K → 2Y \ {∅} is a multivalued map satisfying assumption (f0)
such that for all x ∈ K , F(x, ·) :K → 2Y \ {∅} is C-convex, then the conclusion of Propo-
sition 3.2 also holds.

Indeed, let v ∈ R11. Then v ∈ K∞, and for all y ∈ K and all λ > 0, there exists ξ(y,

y + λv) ∈ F(y, y + λv) such that ξ(y, y + λv) ∈ −W . On the other hand, for any y ∈ K

and λ > 0, the C-convexity of F(y + λv, ·) implies

1

2
F(y + λv, y + λv + λv) + 1

2
F(y + λv, y) ⊂ F(y + λv, y + λv) + C ⊂ C.

Thus

1

2
F(y + λv, y) ⊂ −1

2
ξ(y + λv, y + 2λv) + C ⊂ W + C ⊂ W.

Hence F(y + λv, y) ⊂ W . Since y ∈ K and λ > 0 were arbitrary, we conclude the proof.

Theorem 3.2. Let K be a nonempty closed convex subset of X. Let F :K × K → 2Y \ {∅}
be a multivalued map satisfying assumptions (f0), (f1) and (f4) such that F(x, ·) :K →
2Y \ {∅} is C-convex. Then

(Ep)∞ ⊂ R1 ⊂
⋂
y∈K

{
x ∈ K: F(x, y) ∩ (− intC) = ∅}∞

⊂
⋂
y∈K

{
x ∈ K: F(y, x) ∩ (intC) = ∅}∞

.

If, in addition, there exists x∗ ∈ K such that F(y, x∗) ⊆ −C for all y ∈ K , then
E∞

p = R1.

Proof. As before, set W := Y \ (− intC). Let us prove the first inclusion. Let v ∈ (Ep)∞,
then there exist tk ↓ 0, uk ∈ Ep such that tkuk ⇀ v. For y ∈ K arbitrary, we have
F(uk, y) ⊆ W for all k ∈ N. By assumption (f1), we have F(y,uk) ⊆ −W for all k ∈ N.
Let us fix any λ > 0. For k sufficiently large, C-convexity of F(y, ·) implies

(1 − λtk)F (y, y) + λtkF (y,uk) ⊆ F
(
y, (1 − λtk)y + λtkuk

) + C.
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Hence

0 ∈ F
(
y, (1 − λtk)y + λtkuk

) + W + C ⊆ F
(
y, (1 − λtk)y + λtkuk

) + W.

From assumption (f4), it follows that 0 ∈ F(y, y + λv) + W . This proves v ∈ R1.
The proof of the second inclusion is as follows. Let v ∈ K∞ such that 0 ∈ F(y,

y + λv) + W for all λ > 0 and all y ∈ K . By the previous proposition F(y + λv, y) ⊆ W

for all λ > 0 and all y ∈ K . For any fixed y ∈ K , set xk := y + kv ∈ K for all k ∈ N.
Then F(xk, y) ⊆ W for all k ∈ N. By choosing tk = 1

k
, we have tkxk = y

k
+ v → v as

k → +∞, that is, v ∈ {x ∈ K: F(x, y) ⊆ W }∞. Since y was arbitrary, the proof of the
second inclusion is complete.

The last inclusion is a consequence of assumption (f1).
Let us prove the last part of the theorem. By our hypothesis, there exists x∗ ∈ K such

that F(y, x∗) ⊆ −C for all y ∈ K . Let v ∈ R1. Then for all y ∈ K and for all λ > 0,
0 ∈ F(y, x∗ + λv) + W . By previous proposition, F(x∗ + λv, y) ⊆ W . Thus for all λ > 0,
x∗ + λv ∈ Ep . Hence v ∈ (Ep)∞ and thus R1 ⊆ (Ep)∞. Consequently, R1 = (Ep)∞. �
Theorem 3.3. Let K be a nonempty closed convex set in X and let F :K × K → 2Y \ {∅}
be a multivalued map satisfying hypothesis (H1). If,

(∗) for every sequence {xk} in K , ‖xk‖ → +∞ such that xk‖xk‖ ⇀ v with v ∈ R1 and for all

y ∈ K it exists ky such that F(xk, y) ⊆ Y \ (− intC) for all k � ky , there exists u ∈ K

such that ‖u‖ < ‖xk‖ and F(xk,u) ⊆ −C for k ∈ N sufficiently large,

then problem (1.3) admits a solution. Indeed, Ep is a nonempty weakly closed set.

Proof. For every k ∈ N, set Kk := {x ∈ K: ‖x‖ � k}. We may assume, without loss of
generality, that Kk �= ∅ for all k ∈ N. Let us consider the problem

find x̄ ∈ Kk such that F(x̄, y) ⊆ Y \ (− intC), ∀y ∈ Kk. (3.5)

Taking into account Remark 3.2, we apply Theorem 3.1 (with W = Y \ (− intC)) to con-
clude that problem (3.5) admits a solution, say xk ∈ Kk for all k ∈ N. If ‖xk‖ < k for
some k ∈ N, then, we claim that xk is also a solution to problem (1.3). Suppose to the
contrary that xk is not a solution to problem (1.3). Then there exists y ∈ K with ‖y‖ > k

such that F(xk, y) �⊆ Y \ (− intC). We choose z ∈ K with z ∈ ]xk, y[ and ‖z‖ < k. Writing
z = αxk + (1 − α)y for some α ∈ ]0,1[ then by C-convexity of F(xk, ·), we have

αF(xk, xk) + (1 − α)F (xk, y) ⊆ F(xk, z) + C.

This implies

(1 − α)F (xk, y) ⊆ W + C ⊆ W.

It follows that F(xk, y) ⊆ W = Y \ (− intC), which contradicts to our supposition. Hence
xk is a solution to problem (1.3).

We consider now the case ‖xk‖ = k for all k ∈ N. We may assume, up to a subsequence,
that xk‖xk‖ ⇀ v for v ∈ K . Then v �= 0 and v ∈ K∞. For any fixed y ∈ K and λ > 0, we have
F(xk, y) ⊆ W , ∀k ∈ N sufficiently large (k > ‖y‖). By (f1), F(y, xk) ⊆ Y \ (intC) for
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all k sufficiently large. For every λ > 0 and all k sufficiently large, C-convexity of F(y, ·)
implies(

1 − λ

‖xk‖
)

F(y, y) + λ

‖xk‖F(y, xk) ⊆ F

(
y,

(
1 − λ

‖xk‖
)

y + λ

‖xk‖xk

)
+ C.

Hence

0 ∈ F

(
y,

(
1 − λ

‖xk‖
)

y + λ

‖xk‖xk

)
+ (

Y \ (intC)
) + C.

Thus, by assumption (f4) of hypothesis (H1), 0 ∈ F(y, y + λv) + W . This proves v ∈ R1.
By assumption, there exist u ∈ K such that ‖u‖ < ‖xk‖ and F(xk,u) ⊆ −C for k suf-
ficiently large. We claim that xk is also a solution to problem (1.3). Suppose contrary
that xk is not a solution of problem (1.3). Then there exists y ∈ K , ‖y‖ > k such that
F(xk, y) �⊆ Y \ (− intC) = W . Since ‖u‖ < ‖xk‖ we can find z ∈ ]u,y[ such that ‖z‖ < k.
Thus for some α ∈ ]0,1[, we have by C-convexity of F(xk, ·),

αF(xk,u) + (1 − α)F (xk, y) ⊆ F(xk, z) + C ⊆ W + C.

This implies

(1 − α)F (xk, y) ⊆ W,

a contradiction to our supposition is proving that xk is a solution to (1.3). �
Remark 3.4. During the preparation of this paper, authors came to know that Lee and Bu
[18] also considered GVEP (1.3) in the setting of finite-dimensional Euclidean space R

n

but for a moving cone.

Example 3.1. The function F(x, y) = (y − x, x − y), K = R, C ≡ R
2+, does not satisfy

condition (∗) while Ep = R. Notice also that none of the results appearing in [12,18] is
applicable.

We now establish a couple of necessary and sufficient conditions for the nonemptiness
of Ep for a class of multivalued map F defined on K ⊆ R, which apply to the previous
example. This characterization is new.

(†) for every sequence (xn) in K with |xn| → +∞, xn|xn| → v, v ∈ R1, and for all y ∈ K

it exists ny such that F(xn, y) ⊂ Y \ (− intC) for all n � ny , there exist u ∈ K and n̄

such that |u| < |xn̄| and F(xn̄, u) ⊆ Y \ (intC).
(††) for every sequence (xn) in K with |xn| → +∞, there exist n0, u ∈ K , such that

F(xn,u) ⊂ Y \ intC for all n � n0.

Theorem 3.4. Let K ⊆ R be a closed convex set and let F :K → 2Y \ {∅} be a multivalued
map satisfying hypothesis (H1). Then Ep is closed convex set, and the following three
assertions are equivalent:
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(a) Ep is nonempty;
(b) (†) is satisfied;
(c) (††) is satisfied.

Proof. The closedness of Ep is obtained as before. We reason as follows to prove the
convexity: take x1, x2 ∈ Ep , x1 < x2, and x ∈ ]x1, x2[. Then if y ∈ K , y > x, we write
x = αx1 + (1 − α)y and use the C-convexity of F(x, ·) to obtain F(x, y) ⊂ Y \ (− intC).
In case y ∈ K , y < x, we write x = αx2 + (1 − α)y and proceed as before to conclude
again F(x, y) ⊂ Y \ (− intC). Thus x ∈ Ep , proving the convexity of Ep .

We now prove the equivalences.
(c) ⇒ (b). It is obvious.
(a) ⇒ (c). It follows by taking as u any element in Ep .
(b) ⇒ (a). We proceed as in the proof of Theorem 3.3 until being in the case when

the sequence xn ∈ K , satisfies n = |xn| → +∞, xn|xn| → v ∈ R0 and for all y ∈ K , ny exists

such that F(xn, y) ⊂ Y \ (− intC) for all n � ny . By assumption (†), there exist u ∈ K and
n̄ such that |u| < |xn̄| and F(xn̄, u) ⊆ Y \ (intC). We also have F(xn̄, u) ⊆ Y \ (− intC)

because of the choice of xn̄. We claim that such xn̄ is a solution to (1.3). It only remains to
check that F(xn̄, y) ⊆ Y \ (− intC) for all y ∈ K with |y| > n̄. In the case when xn̄ ∈ [u,y]
or xn̄ ∈ [y,u], the C-convexity of F(xn̄, ·) implies, for some α ∈ [0,1],

αF(xn̄, u) + (1 − α)F (xn̄, y) ⊆ F(xn̄, xn̄) + C.

Then

(1 − α)F (xn̄, y) ⊆ C − αF(xn̄, u) ⊂ Y \ (− intC),

proving the claim. If on the contrary u ∈ [y, xn̄] or u ∈ [xn̄, y], for some α ∈ [0,1], we have
as before

αF(xn̄, y) + (1 − α)F (xn̄, xn̄) ⊆ F(xn̄, u) + C.

It follows that

(1 − α)F (xn̄, y) ⊆ Y \ (− intC).

This completes the proof of the claim and therefore Ep �= ∅. �

4. Existence of a solution of strong GVEP

For the existence of a solution of strong GVEP, the basic assumptions on F are listed in
hypothesis (H2) below.

Hypothesis (H2). The multivalued map F :K × K → 2Y \ {∅} is such that

(f0) for all x ∈ K , F(x, x) ⊆ l(C) := C ∩ (−C);
(f ′

1) for all x, y ∈ K , F(x, y) ⊆ C implies F(y, x) ⊆ −C;
(f ′) for all x ∈ K , the mapping F(x, ·) :K → 2Y \ {∅} is properly C-quasiconvex;
2
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(f ′
3) for all x, y ∈ K , the set {ξ ∈ [x, y]: F(y, ξ) ⊆ C} is closed. Here [x, y] stands for the

closed line segment joining x and y;
(f ′

4) for all x ∈ K , F(x, ·) is weakly lower semicontinuous on K .

Remark 4.1.

(a) One can check that the proper C-quasiconvexity of F(x, ·) implies that the set{
ξ ∈ K: F(x, ξ) �⊆ C

}
is convex for all x ∈ K . Hence condition (A3) (with W = C) of Theorem 3.1 is satis-
fied.

(b) It can be easily seen that the weakly lower semicontinuity of F(x, ·) asserts the weak
closedness of{

ξ ∈ K: F(x, ξ) ⊆ −C
}

for all x ∈ K . Thus condition (A3) (with W = C) of Theorem 3.1 is satisfied.
(c) Similar to part (c) of Remark 3.2, one can prove, under assumptions (f0), (f ′

3) in
hypothesis (H2) and C-convexity of F(x, ·), that given any x ∈ K ,

0 ∈ F(y, x) + C, ∀y ∈ K, implies F(x, y) ∩ (Y \ C) = ∅, ∀y ∈ K.
(4.1)

Hence condition (A4) (with W = C) of Theorem 3.1 holds.

The following result is a particular case of [19, Corollary 4], but it is obtained from
Theorem 3.1 by specializing W = C.

Lemma 4.1. Let K ⊆ X be nonempty weakly compact convex set and let F :K × K →
2Y \ {∅} be a multivalued map satisfying hypothesis (H2) such that for all x ∈ K , F(x, ·)
is C-convex. Then, Esp is nonempty and weakly compact.

Proof. The weak compactness is obtained as usual. To prove the nonemptiness of Esp we
will show that the assumption of Theorem 3.1 are satisfied when specialized to W = C.
This was proved in Remark 4.1. �

In the present situation the cones to be considered are the following:

R′
0 :=

⋂
y∈K

{
v ∈ K∞: 0 ∈ F(y, y + λv) + C, ∀λ > 0,

∀z ∈ K such that F(y, z) ⊆ −C
}

and

R′
1 :=

⋂
y∈K

{
v ∈ K∞: 0 ∈ F(y, y + λv) + C, ∀λ > 0

}
.

Theorem 4.1. Let K ⊆ X be a nonempty closed convex set. Assume that F satisfies hy-
pothesis (H2) such that F(x, ·) is C-convex for all x ∈ K . Then, Esp is a nonempty and
weakly closed set if and only if the following condition holds:
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(∗)′ for every sequence {xn} in K , ‖xn‖ → +∞, xn‖xn‖ ⇀ v with v ∈ R′
1 and for all y ∈ K

it exists ny such that F(xn, y) ⊆ C for all n � ny , there exist u ∈ K and n̄, such that
‖u‖ < ‖xn̄‖ and F(xn̄, u) ⊆ −C.

Proof. To prove (∗)′ is sufficient for Esp �= ∅, a reasoning similar to the proof of Theo-
rem 3.3 is applied. Instead of considering (3.5), we consider the problem

find x̄ ∈ Kn such that F(x̄, y) ⊆ C, ∀y ∈ Kn. (4.2)

Such a problem admits a solution by Lemma 4.1, say xn ∈ Kn, for all n ∈ N. If ‖xn‖ < n

for some n ∈ N, we will show that xn is also a solution to problem (1.5). In fact, for
any fixed y ∈ K with ‖y‖ > n, we take z ∈ K with z ∈ ]xn, y[ and ‖z‖ < n. Writing
z = αxn + (1 − α)y for some α ∈ ]0,1[, we have

αF(xn, xn) + (1 − α)F (xn, y) ⊆ F(xn, z) + C.

This implies

(1 − α)F (xn, y) ⊆ C,

proving the desired result.
We consider now the case ‖xn‖ = n for all n ∈ N. We may assume, without loss of

generality, that xn‖xn‖ ⇀ v. Then v ∈ K∞. For any fixed y ∈ K , F(xn, y) ⊆ C for all n ∈ N

sufficiently large (n > ‖y‖). For every λ > 0 and all n sufficiently large, C-convexity of
F(y, ·) implies(

1 − λ

‖xn‖
)

F(y, y) + λ

‖xn‖F(y, xn) ⊆ F

(
y,

(
1 − λ

‖xn‖
)

y + λ

‖xk‖xn

)
+ C.

Hence

0 ∈ F

(
y,

(
1 − λ

‖xn‖
)

y + λ

‖xn‖xn

)
+ C.

Thus, by (f ′
4), 0 ∈ F(y, z+λv)+C. This proves v ∈ R′

1. Now, we can use assumption (∗)′
to ensure the existence of u ∈ K and n̄ such that ‖u‖ < ‖xn̄‖ and F(xn̄, u) ⊆ −C. Similarly
as in the proof of Theorem 3.3, one can check that xn̄ is also a solution to problem (1.5).
The weakly closedness of Esp follows as usual. The “necessity” of (∗)′ is shown by taking
element in Esp as the point u required in condition (∗)′. �

For algorithmic purposes it is desirable to know a priori when the solution set is
bounded, in this case arises the next condition (f ′

5) giving rise to the characterization ex-
pressed in Theorem 4.2:

(f ′
5) Any sequence xn ∈ K with ‖xn‖ → +∞ such that for all y ∈ K , ny exists such that

F(xn, y) ⊆ C when n � ny,

admits a subsequence {xnk
} such that { xnk‖xnk

‖ } converges strongly.
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Remark 4.2. When Y is a finite-dimensional space, a condition implying condition (∗′)
(with v ∈ R′

1) described in the preceding theorem is R′
1 ⊂ −R′

1 (in particular, if R′
1 = {0}),

since in this case, for all v ∈ R′
1,

0 ∈ F(y, y + λv) + C, ∀λ ∈ R, ∀y ∈ K.

Indeed, (∗)′ is satisfied by taking u = xn − ‖xn‖v. Notice that xn‖xn‖ → v implies ‖u‖ <

‖xn‖ for all n sufficiently large.

Theorem 4.2. Let K ⊂ X be a nonempty closed and convex. Assume that F satisfies hy-
pothesis (H2) and assumption (f ′

5) such that F(x, ·) is C-convex. Then, the following
assertions are equivalent:

(a) Esp is nonempty and weakly compact;
(b) ∃r > 0, ∀x ∈ K \ Kr , ∃y ∈ Kr : F(x, y) �⊆ C, where Kr = {x ∈ K: ‖x‖ � r} �= ∅.

Proof. (a) ⇒ (b). It follows from the previous corollary since Esp is also bounded.
(b) ⇒ (a). This implication is a consequence of Theorem 4.1 and Corollary 4.1 by taking

into account (f ′
5), since in this case (∗)′ holds vacuously. �
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