

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 321 (2006) 132-146

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Recession methods for generalized vector equilibrium problems

Qamrul Hasan Ansari^{a,b,*}, Fernando Flores-Bazán^c

^a Department of Mathematical Sciences, King Fahd University of Petroleum & Minerals, PO Box 1169, Dhahran 31261, Saudi Arabia

^b Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India ^c Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Area de Ciencias Básicas, Campus San Andres, Alonso de Ribera 2850, Casilla 297, Concepción, Chile

Received 29 May 2005

Available online 8 September 2005

Submitted by H. Frankowska

Abstract

By using the recession method, we give some necessary and/or sufficient condition of solutions of generalized vector equilibrium problems.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Generalized vector equilibrium problems; Recession cones

1. Introduction and formulations

A mathematical formulation of many problems, for instance, vector variational inequality problem, vector complementarity problem, vector optimization problem, vector saddle point problem, Nash equilibrium problem for vector-valued functions and fixed point problem, arise in mechanics, operations research, nonlinear analysis and game theory may be stated in the following form:

^{*} Corresponding author.

E-mail addresses: qhansari@kfupm.edu.sa, qhansari@sancharnet.in (Q.H. Ansari), ffloresb@ucsc.cl (F. Flores-Bazán).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.07.059

Given a nonempty set *K* in a real reflexive Banach space *X* and a vector-valued function $F: K \times K \to Y$, where *Y* is a real normed space with an ordered cone *C*, that is, a proper, closed and convex cone such that int $C \neq \emptyset$,

find
$$\bar{x} \in K$$
 such that $F(\bar{x}, y) \notin -\operatorname{int} C, \quad \forall y \in K,$ (1.1)

where int C denotes the interior of C.

Since (1.1) is equivalent to find an equilibrium point of a vector optimization problem, it is known as *vector equilibrium problem* (for short, VEP) and it has been the focus of attention of many researchers in the recent years; see, for example, [2,3,6,9,12,14,15,19] and references therein.

Let 2^Y be the family of all subsets of *Y*. There are several possible ways to generalize VEP for a given multivalued map $F: K \times K \to 2^Y \setminus \{\emptyset\}$, for instance,

find
$$\bar{x} \in K$$
 such that $F(\bar{x}, y) \not\subseteq -\operatorname{int} C, \quad \forall y \in K,$ (1.2)

and

find
$$\bar{x} \in K$$
 such that $F(\bar{x}, y) \cap (-\operatorname{int} C) = \emptyset$, $\forall y \in K$. (1.3)

The latter problem can also be written in the following form:

find
$$\bar{x} \in K$$
 such that $F(\bar{x}, y) \subseteq Y \setminus (-\operatorname{int} C), \quad \forall y \in K$.

These problems are called generalized vector equilibrium problems (for short, GVEP). (1.2) is studied in [1,5,7,17] and references therein. While (1.3) is considered in [4]. Later, it is also studied by Georgiev and Tanaka [13], see, also [20,21]. In most of the papers appeared in the literature, the problem (1.2) is considered since it provides the weak formulation of Stampacchia type generalized vector variational inequality problems (for short, (SGVVIP)_w). In the recent past, (SGVVIP)_w is used as a tool to provide the existence of a weak efficient solution¹ of vector optimization problem (for short, VOP); see, for example, [8] and references therein. However the strong formulation of Stampacchia type generalized vector variational inequality problems (for short, (SGVVIP)_s) provides the necessary and sufficient condition for a weak efficient solution of VOP; see, for example, [10]. Moreover, (1.3) includes a more general form of generalized vector variational inequality problems (SGVVIP)_w and (SGVVIP)_s.

It is clear that problem (1.3) is more stronger than problem (1.2) as every solution of (1.3) is also a solution of (1.2).

The following problem which is closely related to GVEP (1.3) can be termed as *dual* generalized vector equilibrium problem (for short, DGVEP):

find
$$\bar{x} \in K$$
 such that $F(y, \bar{x}) \cap (\text{int } C) = \emptyset$, $\forall y \in K$. (1.4)

```
\min_{x \in K} \varphi(x), \quad \text{where } \varphi: K \to Y
```

if and only if $\varphi(y) - \varphi(x) \notin -\operatorname{int} C$ for all $y \in K$.

¹ $x \in K$ is a weak efficient solution of the following vector optimization problem:

We shall denote by E_p and E_d the solution set of GVEP (1.3) and DGVEP (1.4), respectively.

We further consider the following strong formulation of GVEP:

find
$$\bar{x} \in K$$
 such that $F(\bar{x}, y) \subseteq C$, $\forall y \in K$, (1.5)

and its dual form:

find
$$\bar{x} \in K$$
 such that $F(y, \bar{x}) \subseteq -C$, $\forall y \in K$. (1.6)

Problems (1.5) and (1.6) shall be called the *strong generalized vector equilibrium problem* (for short, SGVEP) and *dual strong generalized vector equilibrium problem* (for short, DSGVEP), respectively.

The absolute solution² of VOP can be found by using (1.5) and strong formulation of GGVVIP. The solution set of problem (1.5) and (1.6) are denoted by E_{sp} and E_{sd} , respectively.

In most of the papers appeared in the literature on the existence theory of solutions of VEP and GVEPs, either the set K is compact (in topological vector space setting)/bounded (in reflexive Banach space setting) or some coercivity condition is assumed. In the recent past, Flores-Bazán and Flores-Bazán [12] studied the existence of solutions of VEP under the asymptotic analysis, where neither compactness of K nor any coercivity condition is assumed. They gave some characterizations of nonemptiness of the solution set and also presented several alternative necessary and/or sufficient conditions for the solution set to be nonempty and compact.

In this paper, we extend the ideas of Flores-Bazán and Flores-Bazán [12] for GVEP. By using recession method, we provide several alternative necessary and/or sufficient conditions for the solution set of GVEP to be nonempty and bounded. In Section 2, preliminary definitions, results and notations are given. Section 3 deals with the alternative necessary and/or sufficient conditions for the solution set of GVEP to be nonempty and bounded.

2. Preliminaries

Throughout this paper X will be a real reflexive Banach space. For any given weakly closed set K in X, we define the recession cone of K as the set

$$K^{\infty} = \{ x \in X \colon \exists t_n \downarrow 0, \ \exists x_n \in K, \ t_n x_n \rightharpoonup x \},\$$

where " \rightarrow " means convergence in the weak topology. We set $\emptyset^{\infty} = \emptyset$.

In case K is also convex, it is known that

$$K^{\infty} = \{ x \in X \colon \exists x_0 \in K, \ x_0 + tx \in K, \ \forall t > 0 \}.$$

This cone does not depend on $x_0 \in K$.

We give some basic properties of recession cones in the following result which will be used in the sequel.

² $x \in K$ is called absolute solution of VOP if and only if $\varphi(y) - \varphi(x) \in C$ for all $y \in K$. It is clear that every absolute solution is a weak efficient solution, see [16].

Proposition 2.1. The following holds:

- (a) $K_1 \subseteq K_2$ implies $K_1^{\infty} \subseteq K_2^{\infty}$;
- (b) $(K+x)^{\infty} = K^{\infty}, \forall x \in X;$
- (c) let $\{K_i\}_{i \in I}$ be any family of nonempty sets in X, then

$$\left(\bigcap_{i\in I}K_i\right)^{\infty}\subset\bigcap_{i\in I}(K_i)^{\infty}.$$

If, in addition, $\bigcap_{i \in I} K_i \neq \emptyset$ and each set K_i is closed and convex, then we obtain an equality in the previous inclusion.

Definition 2.1. Let *K* be a nonempty convex subset of *X*. For a given closed convex cone *P* of a real normed space *Y*, the multivalued map $S: K \to 2^Y \setminus \{\emptyset\}$ is called:

(i) *P*-convex if

$$\alpha S(x) + (1 - \alpha)S(y) \subseteq S(\alpha x + (1 - \alpha)y) + P, \quad \forall x, y \in K \text{ and } \forall \alpha \in [0, 1];$$

(ii) properly *P*-quasiconvex if, $\forall x, y \in K$ and $\forall \alpha \in]0, 1[,$

$$S(x) \subseteq S(\alpha x + (1 - \alpha)y) + P$$
 or $S(y) \subseteq S(\alpha x + (1 - \alpha)y) + P$;

(iii) explicitly δ -quasiconvex [17] if, $\forall x, y \in K, \forall \alpha \in [0, 1]$, we have either

$$S(x) \subseteq S(\alpha x + (1 - \alpha)y) + P$$
 or $S(y) \subseteq S(\alpha x + (1 - \alpha)y) + P$

and if $(S(y) - S(x)) \cap (-\operatorname{int} P) \neq \emptyset$, we have

$$S(x) \subseteq S(\alpha x + (1 - \alpha)y) + \text{int } P, \quad \forall \alpha \in]0, 1];$$

(iv) weakly lower semicontinuous at $x \in K$ if, for any $y \in S(x)$ and for any sequence $x_n \in K$ converges weakly to x, there exists a sequence $y_n \in S(x_n)$ converges strongly to y.

S is weakly lower semicontinuous on K if, it is weakly lower semicontinuous at each point of K.

3. Existence results for a solution of GVEP

For a nonempty subset A of a vector space, we denote by co A the convex hull of A. The next abstract result is a generalization of [12, Theorem 3.1] for multivalued maps.

Theorem 3.1. Let K be a nonempty closed, convex and bounded set in X and let W be any nonempty subset of Y. Let $F: K \times K \to 2^Y \setminus \{\emptyset\}$ be a multivalued map satisfying the following conditions:

(A0) $F(x, x) \subseteq W, \forall x \in K;$ (A1) for all $x, y \in K, F(x, y) \subseteq W$ implies $F(y, x) \subseteq -W;$

- (A2) for all $x \in K$, the set $\{\xi \in K : F(x, \xi) \subseteq -W\}$ is (sequentially) weakly closed;
- (A3) for all $x \in K$, the set $\{\xi \in K : F(x, \xi) \not\subseteq W\}$ is convex;
- (A4) for all $x, y \in K$, $F(\xi, x) \subseteq -W$ for all $\xi \in [x, y]$ implies $F(x, y) \subseteq W$, where [x, y] denotes the line segment joining x and y but not containing x.

Then, the solution set to the problem

find
$$\bar{x} \in K$$
 such that $F(\bar{x}, y) \subseteq W$, $\forall y \in K$

and that of the problem

find $\bar{x} \in K$ such that $F(y, \bar{x}) \subseteq -W$, $\forall y \in K$,

are nonempty, weakly closed and both coincide.

Proof. Although, it is similar to the proof of [12, Theorem 3.1], we present it for the convenience of the readers.

We first find $\bar{x} \in K$ such that

$$\bar{x} \in \bigcap_{y \in K} \left\{ x \in K \colon F(y, x) \subseteq -W \right\}.$$

To that end, we shall use the famous Ky Fan lemma [11] which is a generalization of KKM lemma (see, [22]). Set

$$G(y) = \{ x \in K \colon F(y, x) \subseteq -W \}.$$

Assumption (A2) implies that for each $y \in K$, G(y) is weakly closed and bounded, and since K is weakly compact, G(y) is weakly compact. In order to apply the Fan lemma, we need to prove that for any finite subset $\{y_1, \ldots, y_k\}$ of K, $co\{y_1, \ldots, y_k\} \subseteq \bigcup_{i=1}^k G(y_i)$. If $y = \sum_{i=1}^k \alpha_i y_i \notin \bigcup_{i=1}^k G(y_i)$ for some $\alpha_i \ge 0$, $i = 1, \ldots, k$, $\sum_{i=1}^k \alpha_i = 1$, then $y \notin G(y_i)$ for all $i = 1, \ldots, k$. Thus for each $i = 1, \ldots, k$, $F(y_i, y) \not\subseteq -W$ which implies $F(y, y_i) \not\subseteq W$ by assumption (A1). Thus $F(y, y) \not\subseteq W$ because of assumption (A3), which contradicts assumption (A0). This proves that for any finite subset $\{y_1, \ldots, y_k\}$ of K, $co\{y_1, \ldots, y_k\} \subseteq \bigcup_{i=1}^k G(y_i)$. Hence by Fan–KKM lemma, there exists $\bar{x} \in K$ such that $\bar{x} \in \bigcap_{y \in K} G(y)$, i.e., $F(y, \bar{x}) \subseteq -W$ for all $y \in K$, in other words, the second problem has a solution. By applying the assumption (A4), such a solution is also a solution to the first problem (see, [5, the proof of Proposition 3.2]). Since every solution to the first problem is a solution to the second problem by (A1), we deduce that both sets coincide. The weak closedness is a consequence of (A2). \Box

Remark 3.1. A similar result to that of Theorem 3.1 is derived in [5] for problem (1.2) in the setting of unbounded set *K*.

We now adapt the previous abstract result to our problem and we shall give simpler verifiable conditions on F ensuring the validity of all assumptions imposed in Theorem 3.1.

The basic assumptions on F are listed in hypothesis (H1) below.

Hypothesis (H1). The multivalued map $F: K \times K \to 2^Y \setminus \{\emptyset\}$ is such that

- (f₀) for all $x \in K$, $F(x, x) \subseteq l(C) := C \cap (-C)$;
- (f₁) for all $x, y \in K$, $F(x, y) \cap (-\operatorname{int} C) = \emptyset$ implies $F(y, x) \cap \operatorname{int} C = \emptyset$;
- (f₂) for all $x \in K$, the mapping $F(x, \cdot) : K \to 2^Y \setminus \{\emptyset\}$ is C-convex;
- (*f*₃) for all $x, y \in K$, the set { $\xi \in [x, y]$: $F(\xi, y) \cap (- \text{ int } C) = \emptyset$ } is closed. Here [x, y] stands for the closed line segment joining x and y;
- (f₄) for all $x \in K$, $F(x, \cdot)$ is weakly lower semicontinuous.

Remark 3.2.

(a) One can check immediately that the *C*-convexity of $F(x, \cdot)$ implies that for all $x \in K$, the set

 $\left\{ \xi \in K \colon F(x,\xi) \not\subseteq Y \setminus (-\operatorname{int} C) \right\}$

is convex. Hence condition (A3) (with $W = Y \setminus (-\operatorname{int} C)$) of Theorem 3.1 holds.

(b) It can be easily seen that the weakly lower semicontinuity of $F(x, \cdot)$ asserts the (sequential) weak closedness of

 $\left\{ \xi \in K \colon F(x,\xi) \subseteq Y \setminus (-\operatorname{int} C) \right\}$

for all $x \in K$. Thus condition (A2) (with $W = Y \setminus (- \text{ int } C)$) of Theorem 3.1 is satisfied.

(c) Assumptions (f_0) , (f_2) and (f_3) in hypothesis (H1) imply that, given any $x \in K$,

$$0 \in F(y, x) + (Y \setminus (-\operatorname{int} C)), \quad \forall y \in K, \quad \text{implies}$$

$$F(x, y) \cap (-\operatorname{int} C) = \emptyset, \quad \forall y \in K.$$
(3.1)

Hence condition (A4) (with $W = Y \setminus (-\operatorname{int} C)$) of Theorem 3.1 holds.

Indeed, for every $y \in K$ consider $x_t = x + t(y - x)$ for $t \in [0, 1[$. Clearly $x_t \in K$. The *C*-convexity of $F(x_t, \cdot)$ implies

 $tF(x_t, y) + (1-t)F(x_t, x) \subseteq F(x_t, x_t) + C \subseteq C.$

Since $0 \in F(x_t, x) + (Y \setminus (-\operatorname{int} C))$, there exists $\xi(x_t, x) \in F(x_t, x)$ such that $\xi(x_t, x) \notin \operatorname{int} C$. From a previous inclusion one has

$$tF(x_t, y) \subseteq -(1-t)\xi(x_t, x) + C \subseteq (Y \setminus (-\operatorname{int} C)) + C \subseteq Y \setminus (-\operatorname{int} C).$$

It turns out that $F(x_t, y) \subseteq Y \setminus (-\operatorname{int} C)$ or, equivalently, $F(x_t, y) \cap (-\operatorname{int} C) = \emptyset$. Letting $t \downarrow 0$, we obtain by assumption (f_3) , $F(x, y) \cap (-\operatorname{int} C) = \emptyset$. Since y was arbitrary, the desired result is proved. \Box

The following result shows that (3.1) also holds if we replace the *C*-convexity of $F(x, \cdot)$ by the explicitly δ -quasiconvexity for each $x \in K$.

Proposition 3.1. Assume that the multivalued map $F : K \times K \to 2^Y \setminus \{\emptyset\}$ satisfies assumptions (f_0) and (f_3) such that $F(x, \cdot)$ is explicitly δ -quasiconvex for each $x \in K$. Then (3.1) holds.

Proof. For a given $x \in K$, let

$$0 \in F(y, x) + (Y \setminus (-\operatorname{int} C)), \quad \forall y \in K.$$

$$(3.2)$$

Suppose there exists $y \in K$ such that $F(x, y) \cap (-\operatorname{int} C) \neq \emptyset$. (f_3) can be written, in an equivalent way, as

(f₃) for all $x, y \in K$, the set { $\xi \in [x, y]$: $F(\xi, y) \cap (-\operatorname{int} C) \neq \emptyset$ } is open (in [x, y]).

Since $x \in \{\xi \in [x, y]: F(\xi, y) \cap (-\operatorname{int} C) \neq \emptyset\} := M$, there exists $\alpha \in [0, 1[$ such that $z := x + \alpha(y - x) = \alpha y + (1 - \alpha)x \in M$,

that is,

$$z \in [x, y]$$
 and $F(z, y) \cap (-\operatorname{int} C) \neq \emptyset$. (3.3)

Now by explicitly δ -quasiconvexity of $F(z, \cdot)$, we have

$$F(z, y) \subseteq F(z, z) + C \subseteq C \subseteq W := Y \setminus (-\operatorname{int} C)$$

which implies that

 $F(z, y) \cap (-\operatorname{int} C) = \emptyset,$

a contradiction of (3.3). Therefore, we can only have

 $F(z, x) \subseteq F(z, z) + C \subseteq C \subseteq W,$

that is,

$$F(z, x) \cap (-\operatorname{int} C) = \emptyset. \tag{3.4}$$

Relations (3.3) and (3.4) imply

 $[F(z, y) - F(z, x)] \cap (-\operatorname{int} C) \neq \emptyset.$

By explicitly δ -quasiconvexity of $F(z, \cdot)$, we have

 $F(z, x) \subseteq F(z, z) + \operatorname{int} C \subseteq C + \operatorname{int} C \subseteq \operatorname{int} C$

which contradicts (3.2). Hence $F(x, y) \subseteq Y \setminus (-\operatorname{int} C), \forall y \in K$. \Box

The previous implication is related to a certain maximal pseudomonotonicity condition already discussed by Oettli in [19] and Ansari et al. in [5].

In the same lines of reasoning as in [12], we introduce the following cones in order to deal with the unbounded case, that is, when K is an unbounded set,

$$R_0 := \bigcap_{y \in K} \left\{ v \in K^{\infty} \colon 0 \in F(y, z + \lambda v) + W, \ \forall \lambda > 0, \\ \forall z \in K \text{ such that } F(y, z) \subseteq -C \right\}$$

and

$$R_1 := \bigcap_{y \in K} \left\{ v \in K^{\infty} \colon 0 \in F(y, y + \lambda v) + W, \ \forall \lambda > 0 \right\},\$$

where $W = Y \setminus (-\operatorname{int} C)$.

138

We note that the sets R_0 and R_1 are nonempty (because of assumption (f_0)) closed cone but not necessarily convex. Clearly, $R_0 \subset R_1$.

Proposition 3.2. Let K be a nonempty closed convex subset of X and let (3.1) hold. Then

$$R_{11} := \bigcap_{y \in K} \left\{ v \in K^{\infty} : 0 \in F(y, y + \lambda v) + \left(Y \setminus (-\operatorname{int} C) \right), \ \forall \lambda > 0 \right\}$$
$$\subset \bigcap_{y \in K} \left\{ v \in K^{\infty} : F(y + \lambda v, y) \cap (-\operatorname{int} C) = \emptyset, \ \forall \lambda > 0 \right\}.$$

Proof. It is straightforward. \Box

Remark 3.3. If $F: K \times K \to 2^Y \setminus \{\emptyset\}$ is a multivalued map satisfying assumption (f_0) such that for all $x \in K$, $F(x, \cdot): K \to 2^Y \setminus \{\emptyset\}$ is *C*-convex, then the conclusion of Proposition 3.2 also holds.

Indeed, let $v \in R_{11}$. Then $v \in K^{\infty}$, and for all $y \in K$ and all $\lambda > 0$, there exists $\xi(y, y + \lambda v) \in F(y, y + \lambda v)$ such that $\xi(y, y + \lambda v) \in -W$. On the other hand, for any $y \in K$ and $\lambda > 0$, the *C*-convexity of $F(y + \lambda v, \cdot)$ implies

$$\frac{1}{2}F(y+\lambda v, y+\lambda v+\lambda v) + \frac{1}{2}F(y+\lambda v, y) \subset F(y+\lambda v, y+\lambda v) + C \subset C.$$

Thus

$$\frac{1}{2}F(y+\lambda v, y) \subset -\frac{1}{2}\xi(y+\lambda v, y+2\lambda v) + C \subset W + C \subset W.$$

Hence $F(y + \lambda v, y) \subset W$. Since $y \in K$ and $\lambda > 0$ were arbitrary, we conclude the proof.

Theorem 3.2. Let K be a nonempty closed convex subset of X. Let $F: K \times K \to 2^Y \setminus \{\emptyset\}$ be a multivalued map satisfying assumptions (f_0) , (f_1) and (f_4) such that $F(x, \cdot): K \to 2^Y \setminus \{\emptyset\}$ is C-convex. Then

$$(E_p)^{\infty} \subset R_1 \subset \bigcap_{y \in K} \left\{ x \in K \colon F(x, y) \cap (-\operatorname{int} C) = \emptyset \right\}^{\infty}$$
$$\subset \bigcap_{y \in K} \left\{ x \in K \colon F(y, x) \cap (\operatorname{int} C) = \emptyset \right\}^{\infty}.$$

If, in addition, there exists $x^* \in K$ such that $F(y, x^*) \subseteq -C$ for all $y \in K$, then $E_p^{\infty} = R_1$.

Proof. As before, set $W := Y \setminus (-\operatorname{int} C)$. Let us prove the first inclusion. Let $v \in (E_p)^{\infty}$, then there exist $t_k \downarrow 0$, $u_k \in E_p$ such that $t_k u_k \rightharpoonup v$. For $y \in K$ arbitrary, we have $F(u_k, y) \subseteq W$ for all $k \in \mathbb{N}$. By assumption (f_1) , we have $F(y, u_k) \subseteq -W$ for all $k \in \mathbb{N}$. Let us fix any $\lambda > 0$. For k sufficiently large, C-convexity of $F(y, \cdot)$ implies

$$(1 - \lambda t_k)F(y, y) + \lambda t_kF(y, u_k) \subseteq F(y, (1 - \lambda t_k)y + \lambda t_ku_k) + C.$$

Hence

$$0 \in F(y, (1 - \lambda t_k)y + \lambda t_k u_k) + W + C \subseteq F(y, (1 - \lambda t_k)y + \lambda t_k u_k) + W.$$

From assumption (*f*₄), it follows that $0 \in F(y, y + \lambda v) + W$. This proves $v \in R_1$.

The proof of the second inclusion is as follows. Let $v \in K^{\infty}$ such that $0 \in F(y, y + \lambda v) + W$ for all $\lambda > 0$ and all $y \in K$. By the previous proposition $F(y + \lambda v, y) \subseteq W$ for all $\lambda > 0$ and all $y \in K$. For any fixed $y \in K$, set $x_k := y + kv \in K$ for all $k \in \mathbb{N}$. Then $F(x_k, y) \subseteq W$ for all $k \in \mathbb{N}$. By choosing $t_k = \frac{1}{k}$, we have $t_k x_k = \frac{v}{k} + v \to v$ as $k \to +\infty$, that is, $v \in \{x \in K: F(x, y) \subseteq W\}^{\infty}$. Since y was arbitrary, the proof of the second inclusion is complete.

The last inclusion is a consequence of assumption (f_1) .

Let us prove the last part of the theorem. By our hypothesis, there exists $x^* \in K$ such that $F(y, x^*) \subseteq -C$ for all $y \in K$. Let $v \in R_1$. Then for all $y \in K$ and for all $\lambda > 0$, $0 \in F(y, x^* + \lambda v) + W$. By previous proposition, $F(x^* + \lambda v, y) \subseteq W$. Thus for all $\lambda > 0$, $x^* + \lambda v \in E_p$. Hence $v \in (E_p)^{\infty}$ and thus $R_1 \subseteq (E_p)^{\infty}$. Consequently, $R_1 = (E_p)^{\infty}$. \Box

Theorem 3.3. Let K be a nonempty closed convex set in X and let $F: K \times K \to 2^Y \setminus \{\emptyset\}$ be a multivalued map satisfying hypothesis (H1). If,

(*) for every sequence $\{x_k\}$ in K, $||x_k|| \to +\infty$ such that $\frac{x_k}{||x_k||} \rightharpoonup v$ with $v \in R_1$ and for all $y \in K$ it exists k_y such that $F(x_k, y) \subseteq Y \setminus (-\operatorname{int} C)$ for all $k \ge k_y$, there exists $u \in K$ such that $||u|| < ||x_k||$ and $F(x_k, u) \subseteq -C$ for $k \in \mathbb{N}$ sufficiently large,

then problem (1.3) admits a solution. Indeed, E_p is a nonempty weakly closed set.

Proof. For every $k \in \mathbb{N}$, set $K_k := \{x \in K : ||x|| \le k\}$. We may assume, without loss of generality, that $K_k \neq \emptyset$ for all $k \in \mathbb{N}$. Let us consider the problem

find
$$\bar{x} \in K_k$$
 such that $F(\bar{x}, y) \subseteq Y \setminus (-\operatorname{int} C), \quad \forall y \in K_k.$ (3.5)

Taking into account Remark 3.2, we apply Theorem 3.1 (with $W = Y \setminus (- \text{ int } C)$) to conclude that problem (3.5) admits a solution, say $x_k \in K_k$ for all $k \in \mathbb{N}$. If $||x_k|| < k$ for some $k \in \mathbb{N}$, then, we claim that x_k is also a solution to problem (1.3). Suppose to the contrary that x_k is not a solution to problem (1.3). Then there exists $y \in K$ with ||y|| > k such that $F(x_k, y) \not\subseteq Y \setminus (- \text{ int } C)$. We choose $z \in K$ with $z \in]x_k, y[$ and ||z|| < k. Writing $z = \alpha x_k + (1 - \alpha)y$ for some $\alpha \in]0, 1[$ then by *C*-convexity of $F(x_k, \cdot)$, we have

$$\alpha F(x_k, x_k) + (1 - \alpha) F(x_k, y) \subseteq F(x_k, z) + C.$$

This implies

 $(1-\alpha)F(x_k, y) \subseteq W + C \subseteq W.$

It follows that $F(x_k, y) \subseteq W = Y \setminus (-\operatorname{int} C)$, which contradicts to our supposition. Hence x_k is a solution to problem (1.3).

We consider now the case $||x_k|| = k$ for all $k \in \mathbb{N}$. We may assume, up to a subsequence, that $\frac{x_k}{||x_k||} \rightarrow v$ for $v \in K$. Then $v \neq 0$ and $v \in K^{\infty}$. For any fixed $y \in K$ and $\lambda > 0$, we have $F(x_k, y) \subseteq W$, $\forall k \in \mathbb{N}$ sufficiently large (k > ||y||). By (f_1) , $F(y, x_k) \subseteq Y \setminus (\text{int } C)$ for all *k* sufficiently large. For every $\lambda > 0$ and all *k* sufficiently large, *C*-convexity of $F(y, \cdot)$ implies

$$\left(1-\frac{\lambda}{\|x_k\|}\right)F(y,y)+\frac{\lambda}{\|x_k\|}F(y,x_k)\subseteq F\left(y,\left(1-\frac{\lambda}{\|x_k\|}\right)y+\frac{\lambda}{\|x_k\|}x_k\right)+C.$$

Hence

$$0 \in F\left(y, \left(1 - \frac{\lambda}{\|x_k\|}\right)y + \frac{\lambda}{\|x_k\|}x_k\right) + \left(Y \setminus (\operatorname{int} C)\right) + C.$$

Thus, by assumption (f_4) of hypothesis (H1), $0 \in F(y, y + \lambda v) + W$. This proves $v \in R_1$. By assumption, there exist $u \in K$ such that $||u|| < ||x_k||$ and $F(x_k, u) \subseteq -C$ for k sufficiently large. We claim that x_k is also a solution to problem (1.3). Suppose contrary that x_k is not a solution of problem (1.3). Then there exists $y \in K$, ||y|| > k such that $F(x_k, y) \not\subseteq Y \setminus (-\inf C) = W$. Since $||u|| < ||x_k||$ we can find $z \in]u, y[$ such that ||z|| < k. Thus for some $\alpha \in]0, 1[$, we have by *C*-convexity of $F(x_k, \cdot)$,

$$\alpha F(x_k, u) + (1 - \alpha)F(x_k, y) \subseteq F(x_k, z) + C \subseteq W + C.$$

This implies

$$(1-\alpha)F(x_k, y) \subseteq W,$$

a contradiction to our supposition is proving that x_k is a solution to (1.3). \Box

Remark 3.4. During the preparation of this paper, authors came to know that Lee and Bu [18] also considered GVEP (1.3) in the setting of finite-dimensional Euclidean space \mathbb{R}^n but for a moving cone.

Example 3.1. The function F(x, y) = (y - x, x - y), $K = \mathbb{R}$, $C \equiv \mathbb{R}^2_+$, does not satisfy condition (*) while $E_p = \mathbb{R}$. Notice also that none of the results appearing in [12,18] is applicable.

We now establish a couple of necessary and sufficient conditions for the nonemptiness of E_p for a class of multivalued map F defined on $K \subseteq \mathbb{R}$, which apply to the previous example. This characterization is new.

- (†) for every sequence (x_n) in K with $|x_n| \to +\infty$, $\frac{x_n}{|x_n|} \to v$, $v \in R_1$, and for all $y \in K$ it exists n_y such that $F(x_n, y) \subset Y \setminus (-\operatorname{int} C)$ for all $n \ge n_y$, there exist $u \in K$ and \overline{n} such that $|u| < |x_{\overline{n}}|$ and $F(x_{\overline{n}}, u) \subseteq Y \setminus (\operatorname{int} C)$.
- (††) for every sequence (x_n) in K with $|x_n| \to +\infty$, there exist $n_0, u \in K$, such that $F(x_n, u) \subset Y \setminus \text{int } C$ for all $n \ge n_0$.

Theorem 3.4. Let $K \subseteq \mathbb{R}$ be a closed convex set and let $F: K \to 2^Y \setminus \{\emptyset\}$ be a multivalued map satisfying hypothesis (H1). Then E_p is closed convex set, and the following three assertions are equivalent:

- (a) E_p is nonempty;
- (b) (†) is satisfied;

(c) (††) is satisfied.

Proof. The closedness of E_p is obtained as before. We reason as follows to prove the convexity: take $x_1, x_2 \in E_p$, $x_1 < x_2$, and $x \in]x_1, x_2[$. Then if $y \in K$, y > x, we write $x = \alpha x_1 + (1 - \alpha)y$ and use the *C*-convexity of $F(x, \cdot)$ to obtain $F(x, y) \subset Y \setminus (- \text{ int } C)$. In case $y \in K$, y < x, we write $x = \alpha x_2 + (1 - \alpha)y$ and proceed as before to conclude again $F(x, y) \subset Y \setminus (- \text{ int } C)$. Thus $x \in E_p$, proving the convexity of E_p .

- We now prove the equivalences.
- (c) \Rightarrow (b). It is obvious.
- (a) \Rightarrow (c). It follows by taking as *u* any element in E_p .

(b) \Rightarrow (a). We proceed as in the proof of Theorem 3.3 until being in the case when the sequence $x_n \in K$, satisfies $n = |x_n| \to +\infty$, $\frac{x_n}{|x_n|} \to v \in R_0$ and for all $y \in K$, n_y exists such that $F(x_n, y) \subset Y \setminus (- \text{ int } C)$ for all $n \ge n_y$. By assumption (†), there exist $u \in K$ and \overline{n} such that $|u| < |x_{\overline{n}}|$ and $F(x_{\overline{n}}, u) \subseteq Y \setminus (\text{ int } C)$. We also have $F(x_{\overline{n}}, u) \subseteq Y \setminus (- \text{ int } C)$ because of the choice of $x_{\overline{n}}$. We claim that such $x_{\overline{n}}$ is a solution to (1.3). It only remains to check that $F(x_{\overline{n}}, y) \subseteq Y \setminus (- \text{ int } C)$ for all $y \in K$ with $|y| > \overline{n}$. In the case when $x_{\overline{n}} \in [u, y]$ or $x_{\overline{n}} \in [y, u]$, the *C*-convexity of $F(x_{\overline{n}}, \cdot)$ implies, for some $\alpha \in [0, 1]$,

$$\alpha F(x_{\bar{n}}, u) + (1 - \alpha) F(x_{\bar{n}}, y) \subseteq F(x_{\bar{n}}, x_{\bar{n}}) + C.$$

Then

$$(1-\alpha)F(x_{\bar{n}}, y) \subseteq C - \alpha F(x_{\bar{n}}, u) \subset Y \setminus (-\operatorname{int} C),$$

proving the claim. If on the contrary $u \in [y, x_{\bar{n}}]$ or $u \in [x_{\bar{n}}, y]$, for some $\alpha \in [0, 1]$, we have as before

$$\alpha F(x_{\bar{n}}, y) + (1 - \alpha) F(x_{\bar{n}}, x_{\bar{n}}) \subseteq F(x_{\bar{n}}, u) + C.$$

It follows that

$$(1-\alpha)F(x_{\bar{n}}, y) \subseteq Y \setminus (-\operatorname{int} C)$$

This completes the proof of the claim and therefore $E_p \neq \emptyset$. \Box

4. Existence of a solution of strong GVEP

For the existence of a solution of strong GVEP, the basic assumptions on F are listed in hypothesis (H2) below.

Hypothesis (H2). The multivalued map $F: K \times K \to 2^Y \setminus \{\emptyset\}$ is such that

 (f_0) for all $x \in K$, $F(x, x) \subseteq l(C) := C \cap (-C)$; (f'_1) for all $x, y \in K$, $F(x, y) \subseteq C$ implies $F(y, x) \subseteq -C$;

 (f'_2) for all $x \in K$, the mapping $F(x, \cdot): K \to 2^Y \setminus \{\emptyset\}$ is properly C-quasiconvex;

- (f'_3) for all $x, y \in K$, the set $\{\xi \in [x, y]: F(y, \xi) \subseteq C\}$ is closed. Here [x, y] stands for the closed line segment joining x and y;
- (f'_{4}) for all $x \in K$, $F(x, \cdot)$ is weakly lower semicontinuous on K.

Remark 4.1.

(a) One can check that the proper *C*-quasiconvexity of $F(x, \cdot)$ implies that the set

 $\left\{\xi \in K \colon F(x,\xi) \not\subseteq C\right\}$

is convex for all $x \in K$. Hence condition (A3) (with W = C) of Theorem 3.1 is satisfied.

(b) It can be easily seen that the weakly lower semicontinuity of $F(x, \cdot)$ asserts the weak closedness of

 $\left\{ \xi \in K \colon F(x,\xi) \subseteq -C \right\}$

for all $x \in K$. Thus condition (A3) (with W = C) of Theorem 3.1 is satisfied.

(c) Similar to part (c) of Remark 3.2, one can prove, under assumptions (f_0) , (f'_3) in hypothesis (H2) and C-convexity of $F(x, \cdot)$, that given any $x \in K$,

$$0 \in F(y, x) + C, \quad \forall y \in K, \text{ implies } F(x, y) \cap (Y \setminus C) = \emptyset, \quad \forall y \in K.$$

$$(4.1)$$

Hence condition (A4) (with W = C) of Theorem 3.1 holds.

The following result is a particular case of [19, Corollary 4], but it is obtained from Theorem 3.1 by specializing W = C.

Lemma 4.1. Let $K \subseteq X$ be nonempty weakly compact convex set and let $F: K \times K \rightarrow 2^{Y} \setminus \{\emptyset\}$ be a multivalued map satisfying hypothesis (H2) such that for all $x \in K$, $F(x, \cdot)$ is *C*-convex. Then, E_{sp} is nonempty and weakly compact.

Proof. The weak compactness is obtained as usual. To prove the nonemptiness of E_{sp} we will show that the assumption of Theorem 3.1 are satisfied when specialized to W = C. This was proved in Remark 4.1. \Box

In the present situation the cones to be considered are the following:

$$R'_{0} := \bigcap_{y \in K} \left\{ v \in K^{\infty} \colon 0 \in F(y, y + \lambda v) + C, \ \forall \lambda > 0, \\ \forall z \in K \text{ such that } F(y, z) \subseteq -C \right\}$$

and

$$R'_{1} := \bigcap_{y \in K} \left\{ v \in K^{\infty} : 0 \in F(y, y + \lambda v) + C, \forall \lambda > 0 \right\}.$$

Theorem 4.1. Let $K \subseteq X$ be a nonempty closed convex set. Assume that F satisfies hypothesis (H2) such that $F(x, \cdot)$ is C-convex for all $x \in K$. Then, E_{sp} is a nonempty and weakly closed set if and only if the following condition holds:

(*)' for every sequence $\{x_n\}$ in K, $||x_n|| \to +\infty$, $\frac{x_n}{||x_n||} \rightharpoonup v$ with $v \in R'_1$ and for all $y \in K$ it exists n_y such that $F(x_n, y) \subseteq C$ for all $n \ge n_y$, there exist $u \in K$ and \bar{n} , such that $||u|| < ||x_{\bar{n}}||$ and $F(x_{\bar{n}}, u) \subseteq -C$.

Proof. To prove (*)' is sufficient for $E_{sp} \neq \emptyset$, a reasoning similar to the proof of Theorem 3.3 is applied. Instead of considering (3.5), we consider the problem

find
$$\bar{x} \in K_n$$
 such that $F(\bar{x}, y) \subseteq C$, $\forall y \in K_n$. (4.2)

Such a problem admits a solution by Lemma 4.1, say $x_n \in K_n$, for all $n \in \mathbb{N}$. If $||x_n|| < n$ for some $n \in \mathbb{N}$, we will show that x_n is also a solution to problem (1.5). In fact, for any fixed $y \in K$ with ||y|| > n, we take $z \in K$ with $z \in]x_n, y[$ and ||z|| < n. Writing $z = \alpha x_n + (1 - \alpha)y$ for some $\alpha \in]0, 1[$, we have

$$\alpha F(x_n, x_n) + (1 - \alpha)F(x_n, y) \subseteq F(x_n, z) + C.$$

This implies

$$(1-\alpha)F(x_n, y) \subseteq C,$$

proving the desired result.

We consider now the case $||x_n|| = n$ for all $n \in \mathbb{N}$. We may assume, without loss of generality, that $\frac{x_n}{||x_n||} \rightarrow v$. Then $v \in K^{\infty}$. For any fixed $y \in K$, $F(x_n, y) \subseteq C$ for all $n \in \mathbb{N}$ sufficiently large (n > ||y||). For every $\lambda > 0$ and all *n* sufficiently large, *C*-convexity of $F(y, \cdot)$ implies

$$\left(1-\frac{\lambda}{\|x_n\|}\right)F(y,y)+\frac{\lambda}{\|x_n\|}F(y,x_n)\subseteq F\left(y,\left(1-\frac{\lambda}{\|x_n\|}\right)y+\frac{\lambda}{\|x_k\|}x_n\right)+C.$$

Hence

$$0 \in F\left(y, \left(1 - \frac{\lambda}{\|x_n\|}\right)y + \frac{\lambda}{\|x_n\|}x_n\right) + C.$$

Thus, by (f'_4) , $0 \in F(y, z + \lambda v) + C$. This proves $v \in R'_1$. Now, we can use assumption (*)' to ensure the existence of $u \in K$ and \bar{n} such that $||u|| < ||x_{\bar{n}}||$ and $F(x_{\bar{n}}, u) \subseteq -C$. Similarly as in the proof of Theorem 3.3, one can check that $x_{\bar{n}}$ is also a solution to problem (1.5). The weakly closedness of E_{sp} follows as usual. The "necessity" of (*)' is shown by taking element in E_{sp} as the point u required in condition (*)'. \Box

For algorithmic purposes it is desirable to know a priori when the solution set is bounded, in this case arises the next condition (f'_5) giving rise to the characterization expressed in Theorem 4.2:

 (f'_5) Any sequence $x_n \in K$ with $||x_n|| \to +\infty$ such that for all $y \in K$, n_y exists such that

$$F(x_n, y) \subseteq C$$
 when $n \ge n_y$,

admits a subsequence $\{x_{n_k}\}$ such that $\{\frac{x_{n_k}}{\|x_{n_k}\|}\}$ converges strongly.

144

Remark 4.2. When *Y* is a finite-dimensional space, a condition implying condition (*') (with $v \in R'_1$) described in the preceding theorem is $R'_1 \subset -R'_1$ (in particular, if $R'_1 = \{0\}$), since in this case, for all $v \in R'_1$,

$$0 \in F(y, y + \lambda v) + C, \quad \forall \lambda \in \mathbb{R}, \ \forall y \in K.$$

Indeed, (*)' is satisfied by taking $u = x_n - ||x_n||v$. Notice that $\frac{x_n}{||x_n||} \to v$ implies $||u|| < ||x_n||$ for all *n* sufficiently large.

Theorem 4.2. Let $K \subset X$ be a nonempty closed and convex. Assume that F satisfies hypothesis (H2) and assumption (f'_5) such that $F(x, \cdot)$ is C-convex. Then, the following assertions are equivalent:

(a) E_{sp} is nonempty and weakly compact;

(b) $\exists r > 0, \forall x \in K \setminus K_r, \exists y \in K_r: F(x, y) \not\subseteq C$, where $K_r = \{x \in K: ||x|| \leq r\} \neq \emptyset$.

Proof. (a) \Rightarrow (b). It follows from the previous corollary since E_{sp} is also bounded.

(b) \Rightarrow (a). This implication is a consequence of Theorem 4.1 and Corollary 4.1 by taking into account (f'_5) , since in this case (*)' holds vacuously. \Box

References

- Q.H. Ansari, I.V. Konnov, J.C. Yao, On generalized vector equilibrium problems, Nonlinear Anal. 47 (2001) 543–554.
- [2] Q.H. Ansari, I.V. Konnov, J.C. Yao, Existence of a solution and variational principles for vector equilibrium problems, J. Optim. Theory Appl. 110 (2001) 481–492.
- [3] Q.H. Ansari, I.V. Konnov, J.C. Yao, Characterizations of solutions for vector equilibrium problems, J. Optim. Theory Appl. 113 (2002) 435–447.
- [4] Q.H. Ansari, W. Oettli, D. Schläger, A generalization of vectorial equilibria, Math. Methods Oper. Res. 46 (1997) 147–152.
- [5] Q.H. Ansari, A.H. Siddiqi, S.Y. Wu, Existence and duality of generalized vector equilibrium problems, J. Math. Anal. Appl. 259 (2001) 115–126.
- [6] Q.H. Ansari, X.Q. Yang, J.C. Yao, Existence and duality of implicit vector variational problems, Numer. Funct. Anal. Optim. 22 (2001) 815–829.
- [7] Q.H. Ansari, J.C. Yao, An existence result for the generalized vector equilibrium problem, Appl. Math. Lett. 12 (1999) 53–56.
- [8] Q.H. Ansari, J.C. Yao, On nondifferentiable and nonconvex vector optimization problems, J. Optim. Theory Appl. 106 (2000) 487–500.
- [9] M. Bianchi, N. Hadjisavvas, S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92 (1997) 527–542.
- [10] G.Y. Chen, B.D. Craven, A vector variational inequality and optimization over an efficient set, ZOR-Methods Models Oper. Res. 3 (1990) 1–12.
- [11] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961) 305-310.
- [12] F. Flores-Bazán, F. Flores-Bazán, Vector equilibrium problems under asymptotic analysis, J. Global Optim. 26 (2003) 141–166.
- [13] P.G. Georgiev, T. Tanaka, Vector-valued set-valued variants of Ky Fan's inequality, J. Nonlinear Convex Anal. 1 (2000) 245–254.
- [14] F. Giannessi (Ed.), Vector Variational Inequalities and Vector Equilibria. Mathematical Theories, Kluwer Academic, Dordrecht, 2000.

- [15] N. Hadjisavvas, S. Schaible, From scalar to vector equilibrium problems in the quasimonotone case, J. Optim. Theory Appl. 96 (1998) 297–309.
- [16] S. Komlósi, On the Stampacchia and minty variational inequalities, in: G. Giorgi, F. Rossi (Eds.), Generalized Convexity and Optimization for Economic and Financial Decisions, Pitagora Editrica, Bologna, Italy, 1999, pp. 231–260.
- [17] I.V. Konnov, J.C. Yao, Existence of solutions for generalized vector equilibrium problems, J. Math. Anal. Appl. 233 (1999) 328–335.
- [18] G.M. Lee, I.J. Bu, On vector equilibrium problems with multifunctions, Taiwanese J. Math. (2005), in press.
- [19] W. Oettli, A remark on vector-valued equilibria and generalized monotonicity, Acta Math. Vietnam. 22 (1997) 213–221.
- [20] W. Oettli, D. Schläger, Generalized vectorial equilibria and generalized monotonicity, in: M. Brokate, A.H. Siddiqi (Eds.), Functional Analysis with Current Applications in Science, Technology and Industry, in: Pitman Res. Notes in Math. Ser., vol. 377, Longman, Essex, 1998, pp. 145–154.
- [21] W. Oettli, D. Schläger, Existence of equilibria for monotone multivalued mappings, Math. Methods Oper. Res. 48 (1998) 219–228.
- [22] G.X.-Z. Yuan, KKM Theory and Applications in Nonlinear Analysis, Dekker, New York, 1999.