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1. Introduction

In [3], Border not only gave a wide list of applications of fixed point theorems to, say,
general equilibrium theorem in economics, but, more interesting, it is also proved that some
result appearing in economics about the existence of equilibria is indeed equivalentto some
classical fixed point theorem coming from pure mathematics. Thus, in a way, we could
say that not only such results in pure mathematics (namely, fixed point theorems) have
applications in some other sciences or disciplines (e.g., game theory, optimization theory,
and economics), but actually starting from contexts of other disciplines (e.g., economics)
we can restate and reobtain classical results in mathematics.

It is well known that the famous Browder fixed point theorem [4] is equivalent to a
maximal element theorem (see [28]). In the last decade, many generalized forms of Brow-
der fixed point theorem are used to establish the maximal element theorems for a family
of multivalued maps. Such kind of maximal element theorems are useful to establish the
existence of a solution of abstract economies or generalized games, system of variational
inequalities, etc; see, for example, [6-9,15-19,27,29,30]and references therein. The Brow-
der fixed point theorem has also been generalized for a family of multivalued maps with
applications to maximal elements theory, generalized games or abstract economies, system
of variational inequalities, etc; see, for example, [1,2,7,8,14,23,29] and references therein.

Motivated by the fact that any preference of a real agent could be unstable by the
fuzziness of consumers’ behaviour or market situations, Kim and Tan [13] introduced the
generalized abstract economies with general preference correspondences and proved the
existence of their solution by using the Himmelberg fixed point theorem and the Eilenberg—
Montgomery fixed point theorem.

In this paper, we establish some fixed point theorems for a family of multivalued maps
under weaker assumptions than in [1,14] and references therein. Our fixed point results
can be seen as generalizations of Browder fixed point theorem. By using our fixed point
results, we derive some maximal element theorems for a particular family of multivalued
maps, namely th@-condensing multivalued maps. As applications of our maximal ele-
ment theorems, we prove some general equilibrium existence theorems in the generalized
abstract economies with preference correspondences. Further applications of our results
are also given to minimax inequalities for a family of functions. The results of this paper
are more general than the ones given in the literature.

2. Preliminaries

Let X andY be nonempty sets. Le¥ be a nonempty subset &f and7: X — 2
a multivalued map. Then for all € X andy € Y, we havel' (M) = | J{T (x): x € M} and
xeT Yy)ifandonlyify e T'(x).

For a nonempty seb, we denote by 2 (respectively(D)) the family of all subsets
(respectively, family of all nonempty finite subsets)Df If D is a nonempty subset of
a vector space, then @ denotes the convex hull @d. When D is a nonempty subset
of a topological space) denotes the closure @.
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A nonempty subseb of a topological spac& is said to becompactly operfrespec-
tively, compactly closed) if for every nhonempty compact sulisetf X, D N C is open
(respectively, compactly closed) . Thecompact interiorof D [11] is defined by

cintD = U{G: G € D andG is compactly open ik }.

Itis easy to see that cit is a compactly open set ixi and for each nonempty compact
subsetC of X with D N C # ¥, we havecint D) N C =intc(D N C), where ing (D N C)
denotes the interiorab N C in C. Itis clear that a subsé? of X is compactly open ik
if and only if cintD = D.

Let X andY be topological spaces arftt X — 2! a multivalued map, theff is said to
betransfer compactly open valued dh(see [12]) if for everyx € X and for all compact
subsetD of Y with T(x) N D # @, y € T(x) N D implies that there exists a poifite X
such thaty € intp (T (x) N D). T is said to beransfer open valued oX if for everyx € X,

y € T'(x), there exists a point € X such thaty € intT(x).

Let X be a topological space. A real-valued functipnX — R is said to belower
semicontinuous at € X if for everye > 0, there exists an open neighborhdddf x such
that f(x) > f(x) — e foreachh € U N X.

f is said to bdower semicontinuous oX if it is lower semicontinuous at each point
of X.

Let X be a convex subset of a vector space. A functfonX — R is said to be
quasiconvexon X if for any x1,x2 € X and A € [0, 1], we havef(ix1 + (1 — A)x2) <
max{ f(x1), f(x2)}.

Throughout this paper, all topological spaces are assumed to be Hausdorff.

By using the argument of Lemma 2.1 in [5], it is easy to derive the following result.

Lemma2.1. Let X andY be two topological spaces and I6t: X — 2 be a multivalued
map. TherG is transfer compactly open valued if and only if

U G(x) = U cintG (x).

xeX xeX

By applying Lemma 2.1 and following the argument of Proposition 1 in [15], we have
the following lemma.

Lemma2.2. Let X andY be two topological spaces and l6t: X — 2 be a multivalued
map. Then the following statements are equivalent

(i) G~1:Y — 2X istransfer compactly open valued and forake X, G(x) is nonempty
(i) X =U,cyCintG1(y).

Definition 2.1 [21]. Let E be a topological vector space andd{&be a lattice with a mini-
mal element, denoted iy A mapping® : 2 — C is called aneasure of noncompactness
provided that the following conditions hold for any, N € 2E:

(a) @ (coM) =d (M), wherecoM denotes the closed convex hull &f;
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(b) ®(M)=0ifand only if M is precompact;
(c) ®(M UN)=max® (M), ®(N)).

Definition 2.2 [21]. Let E be a topological vector spac&, C E, and let® be a mea-
sure of noncompactness @& A multivalued map (correspondencg) X — 2F is called
@-condensingrovided that ifM € X with @ (T (M)) > &(M) then M is relative com-
pact, that isM is compact.

Remark 2.1. Note that every multivalued map defined on a compact séttondensing
for any measure of noncompactnd@sslf E is locally convex, then a compact multivalued
map (i.e., T (X) is precompact) igp-condensing for any measure of noncompactress
Obviously, if 7: X — 2F is @-condensing and” : X — 2F satisfiesT’(x) € T (x) for all

x € X, thenT’ is also®-condensing.

Lemma 2.3[18]. Let X be a nonempty, closed, and convex subset of a topological vector
spaceE. Let® be a measure of noncompactnessioet7 : X — 2X be a®-condensing
multivalued map. Then there exists a nonempty compact convex suloset such that
T(K)CK.

Remark 2.2. In [18], E is assumed to be a locally convex topological vector space, but
Lemma 2.3 is true for any topological vector space as we can see in the proof.

3. Fixed point theoremsfor a family of multivalued maps

Throughout the paper, we shall use the following notations.

Let I be any index set. For eache I, let E; be a topological vector space and let
X; be a nonempty subset &;. Let X = [];.; X; andX’ =[], ;. X;, and we write
X=X'"®X;.

Theorem 3.1. For eachi € I, let X; be a nonempty convex set in a topological vector
spaceE; and letK; be a nonempty compact subsetXf Let X =[[;.; X; and K =
[1;c; Ki. Foreachi € 1, let S;, T; : X — 2%i be multivalued maps satisfying the following
conditions

(i) Foreachi e I andforallx € X, coS;(x) C T; (x);
(i) Foreachi e 1, X = UfcintS; (3): yi € Xi};
(iii) For eachi e I and for all M; € (X;), there exists a compact convex sulisgt € X;
containingM; such that for allx € X \ K and for eachi € I, there exists); € Ly,

such thatx € cintS; (7).
Then there exists € X such thaty; € T;(x) for eachi € I.

Proof. Since for eacli € I,
X = U{CintS;l(y[)Z Vi € X,’},
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andK is a nonempty compact subsetXffor eachi € I, there exista\f; € (X;) such that
K c | J{cintST i)z yi € My}

For M;, consider the compact convex €af, < X; as in condition (i) such thalf; C Ly,
and

X\KC U{cintslfl(y,»): vieLy,} foreachiel. (3.1)

Let M =[];c; M; andLy =[[;c; Lm;- ThenLy is a compact and convex subsetXof
containingM. SinceLy \ K € X \ K, by (3.1) we have

Ly \K C U{cintSl.‘l(y,-): vieLy} foreachiel.
SinceM; C Ly, we have
Ly < U{cintSfl(y,»): vie Ly} foreachiel.

Since L)y, is compact, for each € I, there exists a finite set; = {y,.(l), ...,y,.(""H)} of

Ly, for somen; € N such that

ni+1

Ly € | {cints 2 (y)}.
j=1

Since Ly, is compact, there also exists a continuous partition of u{rﬂf)]]), e, ,3,.(”’+1)}

subordinated to the compactly open cover{nmtSi‘l(yl.(j))}’;":ll, that is, for eachj =

1,...,ni+1,8Y: Ly — [0,1] is continuous such that for ali € Ly, Z'}fllﬁ,-(j)(x)
=1andforeachy =1,...,n; +1, ﬂl.(j)(x) =0 forx ¢ cintSl.‘l(yl.(j)). In other words,
B (x) # 0 implies x € cints;(y) € §71(yY), that is, y) € S;(x) for all j =
1,....,n; +1andforeach e I.

Foreach €1, lety;: Lyy — A, be a map defined by

ni+1

pi) =Y B )el” forallxe Ly,
j=1

whereel.(j) is the jth unit vector inR™+1 and A, denotes the standarg-simplex. Then
clearly for each € 1, ¢; is continuous.
For each € I, defineamap; : A,, — COA; C Ly, by

ni+1 ni+1
(), (D,
gi(Zaij e’ ) = Z“ij i

j=1 j=1

wherea” >0foreachiel, 1< j<n; +1 andef:J“llal.(-j) = 1. Then for eachi € I,

i
gi is also continuous. '
LetJ;(x) ={j €{l,...,m +1}: B (x) #£0}. Thenforallx e Ly,
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ni+1 ) ) ni+1 ) )
8ipi(x) = i ( > ﬁ,‘-’)(x)eff)) =3 By

j=1 j=1

= > Py ecoSix) S Ti) = Tilr, ().
JeJi(x)
For eachi € I, let E; be the smallest finite-dimensional vector space contaigtifjgand
C =[1;c; An;- ThenC is a compact convex subset of a locally convex Hausdorff topolog-
ical vector space. Define two mapsC — Ly, and¥ : Ly — C by

h(z) = (8i(zi)),., forallzeC
and
W (x)=(pi(x)),., forallxe Ly,

wherez; is theith projection of;. Since for eachi € 1, g; andg; are continuous; and¥
are also continuous.

Let F =W o h; then F:C — C is a well-defined and continuous function. By Ty-
chonoff’s fixed point theorem [26], there exisis C such thati = F(u) = ¥ o h(u). Let
X = (Xj)ie; = h(n); thenu = ¥ (%), that is, for eachi € I, i1; = ¢; (x). Therefore, for each
iel, xi=gi(u)=gi(pi(x)) eTi(x). O

Remark 3.1. (a) Theorem 3.1 generalizes Theorem 1 in [1] and thus Theorem 2.1 in [14]
in several ways.

(b) When! is a singleton set, Theorem 3.1 generalizes Corollary 1 in [1] and thus Fan—
Browder fixed point theorem [4], Theorem 2 in [10], Theorem 1 in [24], Corollary 3 in
[27] and Theorem 3.2 in [28].

Remark 3.2. In view of Lemma 2.2, condition (ii) of Theorem 3.1 can be replaced by each
of the following conditions:

(i)(a) Foreach €1, Sl.‘1 is transfer compactly open valued &nand for allx € X, S; (x)
is nonempty;

.. . -1 . .

(ii)(b) For ea_lch e I andforally; € X;, S "(y;) is compactly open iX and for allx € X,
Si (x) Is nonempty.

Corollary 3.1. For eachi € I, let X; be a nonempty convex set in a topological vector
spaceE; and X =[[,.; X;. Foreachi e I, let §;,7;: X — 2% be multivalued maps
satisfying the following conditions

(i) Foreachi e I andforallx € X, coS;(x) C T; (x);
(i) Foreachi e 1, X = UfcintS7 (y): yi € Xi);
(iii) Foreachi € I, there exist a nonempty compact convex sufiset X; and a nonempty
compact subsek of X such that for allx € X \ K and for each € I, there exists
3i € C; such thatx e cintS; (7).

Then there exists € X such thaty; € T;(x) for eachi € I.
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Proof. Foreach e I andforallM; € (X;),letLy; = co(C; UM;). ThenL y; is a compact
convex subset ok; containingM;. The result follows from Theorem 3.1.0

When! is a singleton set, the following result is a consequence of Corollary 3.1.

Corollary 3.2. Let X be a nonempty convex subset of a topological vector spadest
S, T : X — 2X be multivalued maps satisfying the following conditions

() Forall x € X,coS(x) C T(x);
(i) Forallx e X, x ¢ T(x) andS~1 is transfer compactly open valued dn
(iii) There exist a nonempty compact convex suBsetX and a nonempty compact subset
K of X such that for eachr € X \ K, there existg € C such thatx € cintS~1(5).

Then there existg € X such thatS(x) = ¢.

4. Maximal element theoremsfor a family of multivalued maps

If we have a multivalued map (correspondenge)n a setX and there is an element
x € X such thatS(x) is empty, then, in a way, such elemanis “maximal.” This situation
is specially interesting when the multivalued map (correspondefiég)associated to a
strict ordering< defined onX so thatS(x) is the “upper contour set” of the element
i.e.,S(x) ={z € X: x < z}. This scope is frequently encountered in the literature concern-
ing ordered sets, see, for example, [19,25,28,29] and references therein. The existence of
maximal elements for multivalued mappings in topological vector spaces and its important
applications to mathematical economies have been studied by many authors in both math-
ematics and economies, see, for example, [6-10,16,18,19,28-30] and references therein.

In 1983, Yannelis and Prabhakar [28] generalized the previous results in the literature
on the existence of maximal elements over compact subsets of Hausdorff topological vec-
tor spaces. It is well known that each fixed point theorem has an equivalent version of a
maximal element theorem. Recently, Deguire and Yuan [8] and Deguire et al. [9] estab-
lished several results for the existence of a maximal element for the family of multivalued
maps.

In this section, we prove the existence of a maximal element for a particular family of
multivalued maps, namely thé-condensing multivalued maps defined on a product of
noncompact sets.

Theorem 4.1. For eachi € I, let X; be a nonempty convex subset of a topological vector
spaceE; and X = [],.; X;. For eachi € I, let S;, T; : X — 2%i be multivalued maps
satisfying the following conditions

(i) Foreachi e I andforallx € X, coS;(x) C T;(x);
(i) For eachi € I and for all x € X, x; ¢ T;(x) and Sfl is transfer compactly open
valued onX;;
(i) Forallx e X, I(x)={i € I: S;(x) # @} is finite
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(iv) Foreachi € I, there exist a nonempty compact convex sufiset X; and a nonempty
compact subsek’ of X such that for allk € X \ K and for each € I (x), there exists
5 € C; such thatx e cintS; (7).

Then there exists € X such thats; (x) = ¥ for eachi € I.

Proof. For allx € X and for eacli € I(x), define two multivalued maps;, B; : X — 2%
by

A =X"®5x) and Bi(x)=X ®T;(x).
Further, we define other two multivalued mapsG : X — 2 by

[ Micrn Ai) if 1) #0,
F(x)_{w = if 1(x) =0,

and

_ [ Micr Bix) if 1(x) #0,
G(X)_{“ o if 1(x) = 0.

To complete the proof, it is sufficient to show th&tr) = ¢ for somex € X. Suppose
otherwise thatl (x) # ¢ for all x € X. Fix an arbitraryx € X; sincel (x) # ¥, there exists

i € I(x) such thatS; (x) # @. By condition (i), for eachy € X, coF(y) € G(y). Condi-
tion (i) implies that for eachy € X, y ¢ G(y) and F~1 is transfer compactly open valued
onX.

Indeed, for any nonempty compact subBedf X, if x € F~1(y) N D, theny € A; (x)
forall i € I1(x) andx € D. This implies thaty; € S;(x) for all i € I(x) andx € D. There-
fore,x € S (yi) N D foralli € I (x).

SinceSfl is transfer compactly open valued &R, there exists; € X; such that

xeintp (SN D) foralli e l(x). (4.1)
For each € I(x), lety = (¥, $;), wherey’ € X' is a fixed element. Now
ueATP) & FeAw=X®S )
& 9 e Si(u) andy’ € X!
& ueSHF)andy e X'
This shows thatt; (5) = S71(§;) for each fixedy’ € X'. Therefore,
xeintp[(AD)TrG)N D] foralliel(x),
and thus

x € ﬂ intp[A;1(9) N D] Cintp[ F~1(5) N D].
iel(x)

HenceF 1 is transfer compactly open valued &n
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By condition (iv), for allx € X \ K and for eachi € I (x), there existg; € C; such that
x ecintS;1(§) = cintA;1(5). Therefore,

xe [ {cintA; ()} gcint( N Ail(i)) = cintF ().
iel(x) iel(x)
It follows from Corollary 3.2 that there exisfse X such thatF (z) = 0. Sincel (Z) # 0,
Si(2) # 0 and A; (2) # ¢ for all i € 1(2), and therefore? () = Nz Ai (2) # ¥ which
contradicts withF (z) = @. Therefore, there exisise X such thatl (x) = @ which implies
thatS;(x) =@ foreachi e I. O

Remark 4.1. If for eachi € I, X; is nonempty compact convex subset of a topological
vector space then the conclusion of Theorem 4.1 holds without condition (iv).

Theorem 4.2. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector spaceE;. Let X =[];.; X; and let® be a measure of noncompactnessioga-
[lic; Ei- Foreachi e I, letS;, T; : X — 2% be multivalued maps satisfying the following
conditions

(i) Foreachi e I andforallx € X, coS;(x) C T;(x);
(i) For eachi € I and for all x € X, x; ¢ T;(x) and Sl.‘l is transfer compactly open
valued onX;;
(i) Forallx e X, I(x)={i € I: S;(x) # @} is finite
(V) T:=Tl;; Ti: X — 2% defined as" (x) = [, Ti (x), is #-condensing.

Then there exists € X such thats; (x) = ¥ for eachi € I.

Proof. SinceT : X — 2% is ®#-condensing, it follows from Lemma 2.3 that there exists a
compact convex subsét of X such that7'(K) € K. Then the conclusion follows from
Theorem4.1. O

Theorem 4.3. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector spacef;. Let X = [],.; X; and let® be a measure of noncompactnessiogr-
[1;c; Ei. For eachi € I, let S; : X — 2%i be a multivalued map satisfying the following
conditions

(i) Foreachi e I andforallx € X, x; ¢ coS; (x);
(i) Foreachi eI, Sl.‘l is transfer compactly open valued af;
(i) Forallx e X, I(x)=/{i eI: S;(x)# @} is finite
(V) S:=Tl;ic; Si: X — 2% defined asS(x) = [],, Si (x), is @-condensing.

Then there exists € X such thats; (x) = ¥ for eachi € I.

Proof. For eachi € I, defineT;: X — 2%i by T;(x) = coS;(x). By condition (iv) and
Lemma 2.3, there exists a nonempty compact convex subsétX such thatS(K) C K.



L.-J. Lin et al. / J. Math. Anal. Appl. 284 (2003) 656-671 665

Let K; be theith projection of K. Then K; is a compact convex subset &f;, and
S;: K — 2Ki_ ThereforeT; (K) = | J{coS;(x): x € K} € K; and conclusion follows from
Theorem4.1. O

Remark 4.2. Condition (ii) in Theorem 4.3 can be replaced by the following condition:

(i") For eachi € I and for allx € X such thatS; (x) # ¢, there existy; € X; such that
x ecintST1(y)).

Indeed, letx € X andx € Si_l(y,') for somey; € X;. Theny; € S;(x) # @, and by
condition (i), there existsy/ € X; such thatx € cintS; *(y)). This shows thats;* is
compactly transfer open valued a6f.

Whenl is a singleton, we have the following result.

Corollary 4.1. Let X be a nonempty closed convex subset of a topological vector #pace
and let® be a measure of noncompactnessiriet S: X — 2X be a multivalued map
satisfying the following conditions

(i) Forall x € X, x ¢ coS(x);
(i) S$~1is transfer compactly open valued an
(iii) S is @-condensing.

Then there existg € X such thatS(x) = ¢.

Remark 4.3. (a) Since every transfer compactly open valued map is transfer open map,
Theorem 4.3 and Corollary 4.1 give a positive answer to an open question of Mehta [18].

(b) Corollary 4.1 generalizes Corollary 2 in [6], Theorem 2 in [16], Theorem 2.2 in [19],
and Theorem 3.1 in [30] in several ways.

5. Generalized abstract economies

Because of the fuzziness of consumers’ behaviour or market situations, in a real market,
any preference of a real agent would be unstable. Therefore, Kim and Tan [13] introduced
the fuzzy constraint correspondences in defining the following generalized abstract econ-
omy.

Let I be any set of agents (countable or uncountable). For £ach let X; be a non-
empty set of actions available to the agénh a topological vector spacg; and X =
[Tic; Xi. A generalized abstract econon(yr generalized gamel” = (X;, A;, F;, P;)icr
[13] is defined as a family of ordered quadruplés, A;, F;, P;), whereA,; : X — 2%i is
a constraint correspondence such tAatx) is the state attainable for the agenat x,

F;: X — 2%i is a fuzzy constraint correspondence such #hat) is the unstable state for
the agent, and P;: X x X — 2% is a preference correspondence such #at) is the
state preference by the agerdt x. An equilibriumfor I is a point(x, y) € X x X such
thatforeach €I, x; € A;(x), y; € F;(x), andP;(x,y) N A;(x) = .
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If for eachi € I and eachx € X, F;(x) = X; and the preference corresponderi;e
satisfiesP; (x, y) = P;(x, y’) foreachx, y, y’ € X, our definitions of a generalized abstract
economy and an equilibrium coincide with the usual definitions of an abstract economy
and an equilibrium due to Shafer and Sonnenschein [22].

As applications of Theorem 4.1, we derive the following general equilibrium existence
results for the generalized abstract economies with infinitely many commaodities and infi-
nitely many agents, and with general preference correspondences.

Theorem 5.1. For eachi € I, let X; be a nonempty convex subset of a topological vector
spaceE;, X = [[;c; Xi, Ai: X — 2% a multivalued mapp;: X x X — 2Xi a prefer-
ence correspondence, ail: X — 2Xi a fuzzy constraint correspondence. For eaeh/,
assume that the following conditions hold

(i) Forall x € X, A;(x) and F; (x) are nonempty and convex

(i) Forall y; € X;, A7 (v), F1(v:), and P (y;) are compactly open sets

(i) Forall (x,y)e X x X, xj ¢ COP;(x,y);

(iv) The setW; = {(x,y) € X x X: x; € A;(x) and y; € F;(x)} is compactly closed in
X x X;

(V) For(x,y) e X x X, I(x,y)={i e I: A;(x)N P;(x,y) # @} is finite

(vi) There exist nonempty compact convex €&tsD; € X; and a nonempty compact
subsetk of X such that for all(x, y) € X x X \ K x K and for eachi € I(x, y),
there existi; € C; andv; € D; satisfyingu; € P;(x, y) N A;(x) andv; € F; (x).

Then there existéx, y) € X x X such that for eachi € I, x; € A;(X), ¥; € F;(x), and
Ai(xX) N Pi(x,y)=0.
Proof. For each e I, defineS;, T; : X x X — 2Xi*Xi py

PN AT X F@) I G y) € W,
S’”’”‘{Ai(x)xﬂ(x) it (x,y) ¢ Wi,

and

o [ICOP, N A X Fi(x)if (x, ) € W,
T’”’”‘{Ai(x)xﬂ(x) it (x, y) ¢ W;.

From conditions (i) and (iii), we have ®(x, y) C T; (x, y) and(x;, y;) ¢ T; (x, y) for each
i el andforall(x,y) € X x X. For each € I and for any(u;, v;) € X; x X;, we have

ST i, vi) =[P un) 0 (A7) x X) 0 (F7 i) x X))
U[X > X\ W) N (A7 ) < X) 0 (F ) x X))

By conditions (ii) and (iv),S[l(u,», v;) iIs compactly open and therefoﬁt;Tl is transfer
compactly open valued oK; x X;. From condition (iv), we obtain

X x X\ K x K S| {87 @i vi): uivi € G
C U{CintS;l(ui,Ui)Z u;, v; € C,’}.
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Theorem 4.1 implies that there exisks y) € X x X such thatS; (x, y) = @ for eachi € I.
If (x,y) ¢ W, for some;j e I, then eitherA; (x) = @ or F;(x) = @ which contradicts the
fact of A;(x) and F;(x) being nonempty for alk € X. Therefore(x, y) € W; for each
i €1,andthust; € A; (%), j; € F;(X),andA;(X) N Pi(X,7)=0. O

Theorem 5.2. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector space;, X = [[;c; Xi, Ai : X — 2%i amultivalued mapp; : X x X — 2% a pref-
erence correspondence, ail: X — 2%i a fuzzy constraint correspondence. ldtbe

a measure of noncompactness®na=[[;_; E;. For eachi € I, assume that the following
conditions hold

iel

() Forall x € X, A;(x) and F; (x) are nonempty and convex

(i) Forall y; € X;, A7 (yi), F;,*(y:), and P, *(y;) are compactly open sets

(i) Forall (x,y)e X x X, x; ¢ COP;(x,y);

(iv) The setW; = {(x,y) € X x X: x; € A;(x) and y; € F;(x)} is compactly closed in
X x X;

V) For(x, e X x X, I(x,y)={iel: A;(x)N P;(x,y) # @} is finite

(vi) The multivalued magA x F) = ([T;c; Ai x [1je; Fi): X x X — 2X¥>X defined as
(Ax F)(x,y)=[lie; Ai(x) x [[;¢; Fi (), is @-condensing.

Then there existgx, y) € X x X such that for eachi € I, x; € A;(x), y; € F;(x), and
Ai(x) N Pi(x,y)=0.

Proof. In view of Theorem 4.2, it is sufficient to show that the multivalued nfap=
[Tic; Ti 1 X x X — 2X*X defined ad (x, y) =[], Ti (x, y), is @-condensing, wherg's
are the same as defined in the proof of Theorem 5.1. By the definiti@h @f (x, y) C
A;(x) x F;j(x) for eachi € I and for all(x, y) € X x X and thereford(x, y) € A(x) x
F(x).SinceA x F is ¢-condensing, by Remark 2.1, we h&vés also@-condensing. O

From Theorems 5.1 and 5.2, we can easily derive the following equilibrium existence
results for the abstract economies with or without involvirgondensing maps.

Corollary 5.1. For eachi € I, let X; be a honempty convex subset of a topological vec-
tor spaceE;, X = [[;; Xi, Ai: X — 2% a multivalued map with nonempty values, and
P;: X — 2% a preference correspondence. For edch/, assume that the following con-
ditions hold

() Forall x € X, A;(x) is convex

(i) Forally; € X;, A;(y;) and P (y;) are compactly open
(i) Forall x € X, x; ¢ Pi(x);
(iv) The setW; = {x € X: x; € A;(x)} is compactly closed iX;
(V) Forallx e X, I(x)={i e I: A;(x) N P;(x) # @} is finite
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(vi) There exist a nonempty compact convex subiset X; and a honempty compact
subsetk of X such that for allx € X \ K and for each € I(x), there existg; € C;
satisfying

Vi € Pi(x) N A;(x).
Then there existg € X such thatforeache I, x; € A;(x) andA; (x) N Pi(x) = @.

Proof. The result follows from Theorem 5.1 by taking(x) = X; and P; (x, y) = P;(x)
forallx,ye X andforeactiel. O

Corollary 5.2. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector spaceE;, X =[[;; Xi, Ai : X — 2% amultivalued map, and®, : X — 2%/ a pref-
erence correspondence. Létbe a measure of noncompactnessos [, E;. For each

i € I, assume that the following conditions hold

iel

(i) Forall x € X, A;(x) is nonempty and convex
(i) Forall y; € X;, A;*(y;) and P, (y;) are compactly open sets
(i) Forall x € X, x; ¢ COP;(x);
(iv) The setW; ={x € X: x; € A;(x)} is compactly closed iX;
(v) Forallx e X, I(x)={i e I: A;(x) N P;(x) # @} is finitg
(vi) The multivalued map := ([[;.; A : X — 2X defined asA(x) = [lic; Ai(x), is
@-condensing.

Then there existg € X such that foreache I, x; € A;(x) and A; (x) N P;(x) = @.

6. Minimax inequalities

From now on, unless otherwise specified, we shall assume that tif¢ sefx € X:
x; € B;(x)} is compactly closed.

Theorem 6.1. For eachi € I, let X; be a nonempty convex subset of a topological vector
spaceE;, X = [[;c; Xi, fit X' x X; — R a real function,B; : X — 2% a multival-
ued map, and4; : X — 2% a multivalued map with nonempty values such that for each
vi € X;, Afl(y,») is compactly open iX. For eachi € I, assume that the following condi-
tions hold

() Forall x € X,coA;(x) C B;(x);

(i) Forall x' € X, y; = fi(x,y;) is quasiconcave

(i) Forall x' € X', x; — fi(x', x;) is lower semicontinuous oK ;

(iv) Forall y; € X;, x' — fi(x',y;) is continuous orX‘;

(v) Forallx e X, I(x)={i e I: A;(x) # @} is finite

(vi) There exist a nonempty compact convex subiset X; and a nonempty compact
subsetk of X such that for allx € X \ K and each € I, there exists); € C; such
thatx € A; (5 and f; (¢, 1) > fi(x', xp).
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Then there exist§ € X such that for eachi € I, x; € B; (X) and f; (X', y;) < f; (X', x;) for
all yi € Aj(x).

Proof. For each e I and for allx € X, defineP; : X — 2Xi by
Pi) = {yi € Xit fix',y) > fix',xp)}.
By condition (i), for eachx € X and for each € I, P;(x) is convex andy; ¢ P;(x).
Condition (iii) implies thatPfl(yi) is open inX for all y; € X; and for each € I.
For each e I, we define other multivalued mafs, S; : X — 2%i by

T (x) = Bi(x)N P;(x) ifxeF,
i(x) = B;(x) if x e X\ F,

and

AN P) ifxeF,
Si(x)_{Ai(x) if x € X\ Fi.

Since for eachi € I and for allx € X, P;(x) is conve, it follows from condition (i) that
coS;(x) C T;(x). Since for eachi € I, F; is compactly closed iX, it is easy to see that
ST = (A7 00 N PTHON) U ((X\ F) NAT ()

is compactly open irX for everyy; € X; and also for eache I and for allx € X, x; ¢
T;(x). Theorem 4.1 implies that there existss X such thatS;(x) = @ for eachi € I.
If x e X\ Fj, for somej € I, thenA;(x) = S;(x) = ¥ which contradicts withA; (x)
is nonempty for alli € I andx € X. Thereforex € F; for all i€l Henceii € B;(x)
and A;(x) N P;(x) =¥ for all i € I and thusk; € B; (%), f;(&', y;) < fi(x', x;) for all
yieA;(x)andalliel. O

Theorem 6.2. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector spacef;, X = [[;; Xi, fi: X' x X; — R a real function,B; : X — 2% a mul-
tivalued map, and4; : X — 2% a multivalued map with nonempty values such that for
eachy; € X;, A[l(y,-) is compactly open iX. Let® be a measure of noncompactness on
E =]],;c; Ei. For eachi e I, assume that conditior(§—(v) of Theoren®.1hold. Further
assume that the multivalued map=[],.; A;: X — 2X defined asA(x) = [];c; Ai (x)
forall x € X, is @-condensing. Then there existg X such that for each e I, x; € B; (x)
and f; (X, y;)) < fi(xi, x;) for all y; € A; (%).

Proof. In view of Theorem 4.2, it is sufficient to show that the multivalued map
S:X — 2% defined asS(x) = [Lic; Si(x) for all x € X, is @-condensing, where;’s

are the same as defined in the proof of Theorem 6.1. By the definiti§n 8f(x) C A; (x)

for all i € I and for allx € K and thereforeS(x) € A(x) for all x € X. SinceA is
@-condensing, by Remark 2.1, we have tBas$ also®-condensing. O

Remark 6.1. (a) If for eachi € I, X; is a compact convex subset of topological vector
space and for alk € X, A;(x) = B;(x) = X;, then Theorems 6.1 and 6.2 reduce to the
theorem of equilibria of Nash [20].

(b) Theorems 6.1 and 6.2 generalize Theorem 4.2 in [2] for noncompact setting.
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Theorem 6.3. For eachi € I, let X; be a nonempty convex subset of a topological
vector spaceE;, X = [[,.; Xi, fi:X x X; — R a real function,a; a real number,

B; : X — 2% a multivalued map, and; : X — 2% a multivalued map such that for each
yi € X, A[l(y,») is compactly open itX. For eachi € I, assume that the following condi-
tions hold

() Forall x € X,coA;(x) C B;(x);

(i) Forall x € X, y; — fi(x,y;) is quasiconcave

(i) Forall y; € X;, x — fi(x,y;) is lower semicontinuous oK;

(iv) Forall x e X, fi(x,x;) < a;;

(V) Forallx e X, I(x) ={i e I: A;(x) # 0} is finite

(vi) There exist a nonempty compact convex subigset X; and a nonempty compact
subsetk of X such that for allx € X \ K and each € I (x), there exists; € C; such
thatx € A7 (3 and f; (x, 3;) > a;.

Then there existg € X such that for eachh € I, x; € B; (x) and

filx,y) <a; forall y; € A;(x).

Proof. For each e I and for allx € X, defineP; : X — 2Xi by
Pi(x)={yi € Xit fi(x,y) > ai}.

Following the argument of Theorem 6.1, it is easy to show that there exésfe such that
X; € B;(x) and A;(x) N P;(x) = @. Thereforef;(x, y;) < a; for all y; € A;(x) and each
iel. O

Theorem 6.4. For eachi € I, let X; be a nonempty closed convex subset of a topolog-
ical vector spaceE;, X =[[,; Xi, fi: X x X; — R areal function,q; a real number,

B; : X — 2%i a multivalued map, and; : X — 2Xi a multivalued map such that for each
yi € X, Ai_l(y,') is compactly open inX. Let @ be a measure of noncompactness on
E =]],;¢; Ei. For eachi e I, assume that conditior(§—(v) of Theoren6.3hold. Further
assume that the multivalued map=[],.; A;: X — 2X defined asA(x) = [];c; Ai (x)
forall x € X is @-condensing. Then there existe X such that for eache I, x; € B; (x)

and

fiGx,yi) <a; forall y; € A;(X).

Proof. Following the argument of Theorems 6.2 and 6.3, we get the conclusion.
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