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1. INTRODUCTION

The Vector Variational Inequality (for short, VVI) has been introduced
in [16] in the setting of finite dimensional Euclidean space. Since then, the
VVI has beeri studied- by Chen et al [6-8, 10], Fu [15], Lai and Yao [19],
Lee et al [22], Siddiqi et al. [29], Yang [33-36] and, Yu and Yao [39] in
abstract spaces. Later on, the VVI has heen extended and generalized in
many different directions. Motivations for this come from the fact that the
VVI and its generalizations have applications in Optimization, Mathematical
Programming, Operations Research and Economics. The Vector Variational-
Like Inequality (for short, VVLI), a generalized form of the VVI, was studied
by Lin [26], Siddiqi et al. [30] and Yang [32] with applications in Vector
Optimization. VVI and VVLI for multivalued maps, considered by Chen
and Craven [9], Daniilidis and Hadjisavvas {13], Konnov and Yao [18], Lee
et al [20-21, 23-24], Lin et al [27], Ansari [1-3], Ansari and Siddiqi [4] and
Lee et al [25], have been shown to be a powerful tool to solve problems
from Vector Optimization. Inspired and motivated by the applications of
the VVLI for multivalued maps, in this paper we consider a more general
form of the VVLI for multivalued maps and introduce the concept of C, —
7-pseudomonotone multivalued maps. By using a fixed point theorem of
Chowdhury and Tan [11], which is a generalized form of Fan-Browder fixed
point theorem [5,14], we prove some results on the existence of solutions of
our new class of the VVLI for multivalued maps in the setting of topological
vector spaces. Several special cases are discussed. .

Let X and Y be topological vector spaces, and X* be the topological
dual of X. Let K and D be nonempty subsets of X and X*, respectively.
Let L(X,Y) be the space of all continuous linear maps from X into Y, and
let (L(X,Y), X) be a dual system of L(X,Y) and X. Let C : K=Y be a
multivalued map, such that Vz € K, C(z) is a proper, closed and convex
" cone in Y with apex at the origin and with int C(z) # 0, where int C(z)
denotes the interior of C(z). Given two maps 6 : K x D — L(X,Y) and
7 : K x K — X, and a multivalued map T : K = D, we consider the
following Generalized Vector Variational-Like Inequality (for short, GVVLI)
which consists in finding y € K, such that

Vz € K, Jv € T(y) such that (8(y,v),n(z,¥)) Zinccw) 0,
where the inequality means that (8(y, v), n(x,y)) ¢ int C(y).
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A point y € K issaid tobe a stmng 3olutmn of the GVVLI, iff Jv € T(y),
such that

{8(y,v), n(z, y)) Zcw) 0 , VoeK.

Obviously, every strong SOhlthﬂ is a solution of the GVVLI, hut in general
the reverse claim is false. :
LetC: K=Y bea multwalued map such that Vz € K, C(x) is a proper,
closed and convex cone in Y with apex at the origin and with int C(z) # 0.
When 9(y,v) = Av, where A : D — L(X,Y) is a nonlinear map, and
=C(y) = —=C(y), the GVVLI reduces to the following Extended Generalized
Vector Variational-Like Inequality which consists in finding y € K, such that

< Vz € K) Jve T(y) : (A’U, 77(337 y)) Z—imé(y) 0.

It was introduced and studied in [2]. Some existence results have been proved
in (2] by using KKM-Fan Theorem (14].

When 6(y,v) = v and C(y) = —C(y), the GVVLI becomes the problem
of finding ¥ € K such that

Vz € K, Jv € T(y) : (v,")(.’L‘, y)) Z—inté(y) 0.

It was investigated in [1, 4, 25]. i
When 8(y,v) = v, 9(z,y) = z — y and C(y) = —C(y), the GVVLI is
equivalent to the problem of finding y € K such that

Vz € K) e T(y) : (U,J.’f - y> Z—inté(y) 0.

This problem was considered by Daniilidis and Hadjisavvas {13], Konnov and
Yao [18], Lee et al [21, 23-24] and Lin et al [27].

When Y =R, L(X,Y) = X", C(z) = R_, Vz € K, the GVVLI reduces
to the following problem considered by Siddigi et al [31] in the setting of
reflexive Banach spaces: find y € K such that

Vze K, veT(y) : (8(y,v).n(z,y)) 2 0. ’

* This is the weak formulation of the Generalized Variational-Like Inequality
- considered by Parida and Sen {28} and Yao [37-38].

It is clear that our GVVLI is more general and unifying one, which is one
of the main motivations of this paper.
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2. PRELIMINARIES

Let. X and Y be topological vector spaces and X* be the topological dual
of X. Let {L(X,Y), X) be a dual system of L(X,Y) and X.

Let C : K =Y be a multivalued map such that Vz € K, C(z) is a proper,
closed and convex cone with apex at the origin and with int C(z) # 9. The
following notations will be used in the sequel:

C_:= () C(z) and Cy:=conv{C(z):z € K},

zeK

where convA denotes the convex hull of the set A.

Definition 1. Let K and D be, respectively, nonempty subsets of X and
X*, and let P be a convex cone in Y. Given two maps 6 : K x D — L(X,Y)
and : K x K — X, then a multivalued map T : K =3 D is called:

(i) (P)— n-monotone with respect to 8 iff for every pair of points z,z € K
and Vu € T(z),Yw € T(z), we have

(0(1}, ’U.) - 0(2’, 'LU), 17(-""» z)) € _P;

(ii) (P) — n-pseudomonotone with respect to 6 iff for every pair of points
z,z € K and Vu € T(z),Vw € T(z), we have

b(z,w)yn(z,2)) € —P = (8(z,u),n(z,2)) € ~P;

(iii) C, — n-pseudomonotone with respect to @ iff for every pair of points
z,z € K and Vu € T(z), for all w € T(z), we have that

(e(z’ w)s Tl(ﬂv‘, 2)) Zint(z) 0 = (0(3;1 u),ﬂ(x, Z)) Zint(z) 0;

(iv) weakly (P) — n-monotone with respect to 6 iff for every pair of points
1,2 € K and Yw € T(z), 3u € T(x), suca that

(0(2, u) - G(Z, w)a ﬂ(z, z)) € —'P;
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(v) weakly (P) — n-pseudomonotone with respect to @ iff for every pair of
points , z € K and Yw € T(z), we have

(0(z,w),n(z,2)) € =P = (0(z,u),n(3,2)) € -P,
| " for some u € T(z);

(vi) weakly C; — n-pseudomonotone with respect to 6 iff for every pair of
points z, z € K and Vw € T(z), we have

<0(z) ‘U)), "(z’ 2,’)) Zint (z) 0 = (0(.'17, u)) ’7(1" Z)) Zint (2) 0)
for some u € T(z);

(vii) V-hemicontinuous with respect to 0 iff K is convex and Vz,z € K,
Va €]0,1[ and Vi, € T(az + (1 — @)z2), 3t € T(z) such that VZ € X,
(0(z,ta), £) converges to {6(z,t),2) as a | 0.

Remark 1. (a) Definition 1 can be regarded as an extension of Definition
2.1 in [18].

(b) fY =R, L(X,Y) = X* and P = R_, then the mappings in Definition
1 (ii) and (v) are called n-pseudomonotone with respect to § and weakly
n-pseudomonotone with respect to 0, respectively. v

(c) 1t is clear that (i) implies (ii) and (iv), (ii) implies (v), (iii) implies (vi),
and (iv) implies (v).

(d) It is also easy to see that if T is (C_) — n-monotone (respectively, weakly
C, — n-monotone) with respect to 6, then it is C, — n-pseuodomonotone (re-
spectively, weakly C, — n-pseudomonotone) with respect to 6.

Let s € Y*, where Y* is the topological dual of Y. Consider the map
0, : K x D — X*, defined by

0,(2,T(2)),x) = (5,(8(2,T(2)),2)) , Vz, Z,E K.
Consider also
H(s):={z €Y :(sz) <0}

and .
Ci={leY" :(l,x) <0, Vz € C}.
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Proposltlon 1.LetT: K=Dbe(H (s)) n-pseudomonotone (respectively,
- weakly (H(s)) —n-pseudomonotone) with respect to 8, for some s € Y*\ {0}.
Then T is n—pseudomonotone (respectively, weakly 7-pseudomonotone) with
respect to 6,.

Proof. Vz, z € K, assume that
(0:(2,w),n(z,2)) 20 or — (6,(2,w),n(z,2)) <0, Ywe T(2).

Then (s, —(0(z, w),n(z, 2))) <0, Yw € T(2) and (8(z, w), n(z, 2)) € —H(s).
Since T is (H(s)) — n-pseudomonotone with respect to 8, we must have

<9(IL‘, u)r 7)(1, Z)) € —H(S) , Yue T(.’E)
Hence, Vu € T'(z),
~(6,(z,4),7(z,2)) S0 or (B,(z,u),n(z,2)) > 0.

So, T is n-pseudomonotone with respect to 4,. Analogously, we can prove
the other part. a

Definition 2. Let W : X =Y be a multivalued map. The graph of W,
denoted by G(W), is

GW):={(r,z2) e XxY:z€ X, z€ W(z)}.

The inverse W-! of W is the multivalued map from R(W), the range of W,
to X defined by
teWl(z) & zeW(z).

In other words, W~'(z2) := {z € X : (z,2) € G(W)}.

We mention a result of Chowdhury and Tan [11] which is a generalized
form of Fan-Browder fixed point theorem [5, 14].

Theorem 1. Let K be a nonempty and convex subset of a topological vector
space X and A, B : K =3 K {0} be two multivalued maps, such that
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1° vz € K, A(z) C B(2);
2° Vz € K, B(z) is convex;

3" Vz € K, A!(z2) is compactly open (i.e.; A7Yz)N L is open in L for
each nonempty and compact subset L of K); - .

4% there exist a nonempty, closed and compact subset E of K and z € F,
such that K \ E C B~1(2);

59 Vz€ E, A(z) #0.
Then 32 € K, such that z, € B(z).

The following well-known result plays a crucial role in the proofs of re-
sults of Sect.4.

Theorem 2 (Kneser) [17). Let K be a nonempty and convex subset of
a vector space, and let E be a nonempty, compact and convex subset of a
Hausdorff topological vector space. Suppose that the functional f : K x E —
R is such that, for each fixed z € K, f(z,-) is lower semicontinuous and
convex and that, for each fixed z € E, f(:,z) is concave. Then

min 52}3 f(z,z) = fg}g min f(z,x).

3. EXISTENCE RESULTS

Throughout this paper, the bilinear form (-, -) is supposed to be continu-
ous. First of all we establish a generalized linearization lemma as follows:

Lemma 1. Let X and Y be topological vector spaces, K be a nonempty
" and convex subset of X, and D be a nonempty subset of X*. Let C: K=Y
be a multivalued map such that Vz € K, C(z) is a proper, closed and
convex cone in Y with apex at the origin and with int C(z) # 0. Let
0: KxD— L(X,)Y),n: KxK— X and T : K=3D. We consider the
following problems:
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(I) Findy € K such thatVz € K, Jv € T(y) : (O(y; v),7{(z,y)) Zintcy) 0;

(1) Findye K such that Vz € K, Ju e_T(x) : {0z, u),n(z,y)) Zinncy) 0

(1) Find veK such that Vu € T(z) : (o(a:, u),n(z,y)) Zincy) 0, Yz € K.
Then, | | ' | | |

(i) Problem (I) implies Problem (II) if T is weakly C, —-pseudomonotone
with respect to 6 and, moreover, implies Problem (III) if T is
C, — n-pseudomonotone with respect to 8;

(ii) Problem (II) implies Problem (I) if T' is V-hemicontinuous and, 7(-,-)
and (-, -) are affine in their first arguments such that 5(z,z) =0, Vz € K:

(iii) Problem (III) implies Problem (II).

Proof. (i) It follows from the weak C; —1-pseuodomonotonicity with respect
to § and Cy — n-pseuodomonotonicity with respect to 8 of T, respectively.
(ii) Let y € K be a solution of (II). Then Vz € K, 3u € T(x) such that

(9(31 u)a 17(-"7, y)) Zint C(y) 0.

Set zo := az + (1 — a)y, for o €)0,1]. Since K is convex, z, € K. Then
3u, € T(z,), such that

(0(Tas ta), N(Zar Y)) Zint cw 0.

Since 4(-,-) and 7(-,-) are affine in their first é,rguinents and n(z,z) =0,
Vz € K, we have

02(6(22, ua): 77(-'5, y)) + a(]- - a) (o(y’ ua)y n(x’ y)) Zint C(y) O’

or ‘
a*(0(z, va), 1, 9)) + (1 — @)(6(y, ua), n(z,¥)) ¢ int C(y).
Since C(y) is a convex cone, we get

o(0(z, ua), n(z, ¥)) + (1 — a)(0(y, ua), n(z,y)) ¢ int C(y).
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Taking ¢ } 0 and by V-hemicontinuity with respect to 8 of T, 3v € T(y),
such that '

(O, D n(e, ) ¢ int CQ), e, (0(0,),1(,) Fimoty 0.

Hence y is a solution of (I).
(iii) is obvious. o

Now we are ready to prove some existence theorems for the GVVLI under
certain pseudomonotonicity assumptions.

Theorem 3. Let X and Y be topological vector spaces and let X* be the
topological dual of X. Let K be a nonempty and convex subset of X and

D be a nonempty subset of X*. Assume that the following conditions are
satisfied:

(i) C: K=Y is a multivalued map such that Vz € K, C(z) is a proper,
closed and convex cone in Y with apex at the origin and with

int C(z) # 0;

(i) W : K33Y is a multivalued map, defined by W(z) :=Y \ {int C(x)}
- Vr € K, such that G(W) is closed; '

(i) 6: K x D — L(X, Y) is affine in the first argument;

(iv) n: K x K — X is continuous in the second argument and affine in the
first argument such that n(z,z) =0, Vz € K;

(v) T: K=D is C, — n-pseudomonotone and V-hemicontinuous with re-
spect to 6,

(vi) there exist a nonempty, closed and compact subset E of K and z € E,
such that Vz € K\ E, we have

Yw € T(Z)v (B(Za w)’ 17(2, Z)) ZintC(z) 0)

where the inequality means that {(8(z,w),n(Z, z)) € int C(2).
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Then; there exists a solution y € E to the GVVLI

Proof. 'Cbhsider h\b multivalued maps A,B: K3 K U{@}, defined by
A@) = {z € K : JueT(), (O(z,u),1(z,2)) i 0)
and -
B(z):={z € K : Ywe T(z), (8(z,w),n(z, z)) 2inc(z) 0} , VzeK.

The proof is divided into the following five steps:
(a) For each z € K, A(z) C B(z): Let z € A(z). Then 3i € T(z),

(3.1) (8(x, @), n(z, 2)) 2incc(s) 0.

Assume to the contrary that = ¢ B(z). Then 3w € T(z),
(0(z,w),n(z, 2)) Zincz) 0

By C, — n—pseudbmonotonicity with respect' to 8 of T, we have Vu € T'(z),
(6(z, ), 0(z, 2)) Zincc(s) 0,

which contradicts to (3.1).
(b) For each 2z € K, B(z) is convex: Let z,,2, € B(z) and a, # > 0 such
that o + 8 = 1. Then Yw € T(2),

(3.2) (0(z, w), n(x1,2)) >¢(2) 0, ie, (8(z,w),n(z1,2)) € int C(2)
and .

(33)  (8(z,w),n(z2,2)) >c() 0, ie., (8(z,w),n(z2 2)) € int C(2).
Multiplying (3:2) by o and (3.3) by S, and then add resulting terms, we get
(=, w),dr)(xl, z)) + (8(z, w), Bn(z2, 2)) € int C(2) +int C(2) C int C(z).

Since 5(-, -) is affine in the first argument, we have

(0(2, w), n(azy + Bz2, 2)) Zimcyy) O
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Hence azx, + fz; € B(z), as desired.

(c) For each z € K, A~!(z) is compactly open (i.e., A~'(z)N L is open in
L for each nonempty and compact subset L of K): Let Q = A~ (z)NL =
{z € L:z¢€ A(z)} and {z,} be a net in Q°, the complement of Q in L,
convergent to z € L. Since z, € Q°, Vu € T(z), '

{0z, u),n(x, 2n)) Zinc(s) 0, e, (0(z,u),n(z,2,)) ¢ int C(2,)

and hence

(0(z,u),n(z, 22)) € W(z,) =Y \ {int C(z,)}.
Since 8(z,u) € L(X,Y), Vz € K, u € T(z) and 7(-,-) is continuous in the
second argument, we achieve that the net {(6(z,u),7n(z,2,))} converges to
(0(z,u),n(z, 2)) € Y! Thus

(20, (0(z, 4), n(x, 2n))) converges to (z,(0(z,u),n(z,2))) € G(W),
because G(W) is closed. Therefore, Yu € T(z),
(6(z,u),n(z,2)) € W(2) =Y \ {int C(2)},

and hence z € Q°. Consequently A~}(z)( L is open in L.
(d) By the hypothesis (vi), there exist a nonempty, closed and compact subset
E of K and z € E such that Vz € K \ E, we have -

yw € T(z)) (0(2» 'U)), 7)(2) Z)) ZintC(z) 0.

Then K\ E C B71(2).
(e) B has no fixed point: Suppose that B has a fixed point, say z € K.
Then Ywo € T(2), (6(20,ws), N(20, 20)) Zintc(z) 0. Since 1(z,2) = 0, we
have

{6(20, wo), (20, 20)) = 0 € int C(z),
and thus int C(2) is an absorbing set in Y, which contradicts the assumption
that C(z) is proper in Y. Hence B has no fixed point.

Since B has no fixed point, we reach to a conclusion that either A or B
would not satisfy at least one of the assumptions of Theorem 1. As we have
seen above that A and B satisfy all the assumptions of Theorem 1 except 5°,
that is, Vz € E, A(z) is nonempty. Hence there must be an y € E such that
A(y) =0, namely, Vz € K,

Fu € T(z), (0(z,u),n(z,¥)) Zinc) O-

~
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From Lemma 1, we have y € E such that
Vz e K, e T(y)’ (B(y’ v), 77(-7:: y)) Zint Cly) 0.

- We now obtain an existence theorem for the GVVLI for weakly Cz -7
pseudomonotone maps with respect to § under additional assumptions.

Theorem 4. Let X, Y, X*, K, E, D, C, W and 7 be same as in Theorem

3. Assume that the condition (vi) of Theorem 3 and the following conditions
are satisfied:

(i) 0: K x D — L(X,Y) is continuous in the second argument and affine
in the first argument;

(ii) T : K=3D is compact valued, weakly C, — 75-pseudomonotone and
V-hemicontinuous with respect to 8.

Then, there exists a solution y € E to the GVVLL

Proof. Consider two multivalued maps A,B: K = K U{@}., defined by
A(z):={z € K : VueT(z), (8(z,u),n(z,2)}) Zinc(z) 0}

and
B(Z) = {IL‘ €K : Yu € T(Z), (e(zi w)) 77(1?, z)) ZintC(z) 0} ’ Vze K.

By using the same arguments as in the proof (a) of Theorem 3 and weakly
C. — n -pseudomonotonicity with respect to § of T, we see that A(z) C
B(z), Vz € K.
~ We have already seen in the proof of Theorem 3 that Vz € K, B(z) is

convex and the multivalued map B has no fixed point.

Now we will see that, for each € K, A~!(x) is compactly open (i.e.,
A~Yz)N L is open in L for each nonempty and compact subset L of K).

Let Q = A'(z)NL = {2 € L:z € A(2)} and {2,} be a net in QF, the
complement of @ in L, convergent to 2 € L. Since z, € Q°, then for some
up, € T(z) we have ‘

(0(z, un), (T, 20)) Zintc(a) 0, e, (B(z,un),n(z,2,)) ¢ int C(z,), Vn
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and hence

AO(z, un), 0(Z, 20)) € W(2a) = Y \ {int C(2,)} , Vn.

Since T is compact valued, the net {u,} has a convergent subnet {u,, }. We
will still denote this subnet by {u,}. Let {u,} converge to some u € T(z).
Since 6(-,-) and 7(-,-) are both continuous in their second arguments and
0(z,u) € L(X,Y), Vz € K, u € T(z), we have the net {{8(z,un), n(z, 2,))}
converges to (0(z,u),n(z, z)} € Y. Thus (2,, (6(z, un), 7(z, 2»))) converges to
(2, (6(z, u), n(z, 2))) € G(W), because G(W) is closed. Therefore, for some
u € T(z),
{0(z, u),n(z,2)) € W(2) =Y \ {int C(2)},

and hence z € Q°. Consequently A~!(z)N L is open in L.
Hence, as in the proof of Theorem 3, there must be an y € E such that
A(y) = 0, namely, for each z € K,

Vu € T(z), (8(z,u),n(z,y)) Zincy) O-

From Lemma 1, we have y € E such that
Vz € K, Jv € T(y), (0(y,v),n(z,y)) Zincy 0-

Next, we shall prove an existence result without any kind of pseudomono-
tonicity assumption.

Theorem 5. Let X, Y, X*, K, E, C, W and 7 be same as in Theorem 3.
Assume that the condition (vi) of Theorem 3 and the following conditions
are satisfied:

(i) D is a compact subset of X*;

(ii) 6 : K x D = L(X,Y) is continuous in both the arguments and affine
in the first argument;

(iii) T : K = D is a multivalued map such that its graph is closed.
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Then there exists a solution y € E to the GVVLI.

Proof. Consider the multivalued map B : K = K J{0}, defined by
B(z) = {z € K : YweT(2), (0(z,0),n(z,2)) >mcw 0} » Vze K.

As we have seen in the proof of Theorem 3, that Vz € K, B(z) is a convex
subset of K and the multivalued map B has no fixed point.
Now we have only to show that, Vz € K, B~!(z) is compactly open (i.e.,
B Yz)N L is open in L for each nonempty and compact subset L of K).
‘Let Q=B Yz)NL={2€ L:z € B(2)} and {z,} be a net in Q°, the
complement of Q in L, convergent to z € L. Since z, € Q, then for some
wy, € T(2,), we have

(0(zn, wn), 9(%, 24)) Zintc(z) 0, i€, (0(2a,wn),n(z,2,)) ¢ int C(z,), Vn

and hence
(0(2,,, wn)v ﬂ(.T, zn)) E W(zn) y Vn.

Since T'(K) is contained in a compact set D, we may assume that w, con-
verges to some w € D, then by the definition of closed graph of T, we have
w € T(2). Since 7(-,-) in the second argument and 6(-,-) in both the ar-
guments are continuous, and 6(z,u) € L(X,Y), Vz € K, u € T(z), we
have the net {{8(zn, wn), n(x, 2,))} converges to (§(z,w),n(z,2)) € Y. Thus
(20, (9(2n, wn), 7z, z2))) converges to (2, (6(z, w),n(z, 2))) € G(W), because
G(W) is closed. Therefore, for some w € T(z),

(6(z,w),n(z,2)) € W(z) =Y \ {int C(2)},

and hence z € Q°. Consequently B~!(z) ()L is open in L.
Hence, as in the proof of Theorem 3, there must be an y € E, such that
B(y) = 0, i.e, there exists y € E, such that

Vz € Ka Jve T(y): (B(yv 'U), 77(1', y)) Z—intC(z) 0.

Remark 2. We note that in all results of this section, we neither assumed
X and Y are Hausdorff nor Vz € K, C(z) is pointed.
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4. SCALARIZATION

~ In this section, we use the technique of Konnov and Yao [18] to derive
some existence theorems for the GVVLI by way of solving an appropriate
Generalized Variational-Like Inequality (for short, GVLI).

Through out in this section we assume that X is a Hausdorff topological
vector space.

Theorem 6. Let X, Y, X*, K, D, W, n and # be same as in Theorem 3.
Assume that the following conditions are satisfied:

(i) C: K=Y is defined as in Theorem 3 such that C} \ {0} # ¢;

(ii) T : K= D is V-hemicontinuous and (H(s)) — n-pseudomonotone with
respect to 8 for some s € C3 \ {0}, where H(s) #Y.

(iil) there exist a nonempty and compact subset E of K and zZ € E, such
that Vz € K \ E, we have

Vuw € T(z)v (0(2’ w)a 77(2’ z)) _>_intC(z) 0.

Then, there exists a solution y € E to the GVVLI.
If, in addition,

(iv) Vz € K, T(z) is convex and compact;
(v) Vz,z € K, ww (8(z,w),n(z, 2)) is lower semicontinuous and convex;
(vi) Vz € K, z — (6(z,w),n(z, z)) is concave.
Then, there exists a strong solution y € F to the GVVLI.
Proof. (a) Since H(s) # Y, it can be shown that int H(s) = s7!(]0, —oo[)
(see, [23]). As s € C3 \ {0}, the multivalued map T is n-pseudomonotone
with respect to 6, due to Proposition 1. Now, in the special case where

Y =R, C(2) = R-, Vz € K, Theorem 3 guarantees the existence of a
solution y € E to the GVLI,, i.e., 3y € ‘F such that

(4.1) Ve K, JveT(y), (0:(y,v),n(z,y)) > 0.

31
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Conséquently, Vz € K, 3v € T(y), such that
(5,(0(y, v}, n(z,9))) > 0,
and hence (0(y, v),n(z,y)) ¢ int H(s). Since s € ‘C_';, int H(s) D int C, 2

int C(y), so that
(6(y,v), n(z,y)) ¢ int C(y).
(b) We define a real-valued function f : K x T(y) = R by

f(z,9) = (0:(y,v), n(z, v)).
By definition, for s € Y*, we have

(6:(y, v),n(z, ) = (s, (B(y, v), n(z, 9)))-

From condition (iv) and (v), we have Vz € K, f(z,-), is lower semicontinuous
and convex, and Vv € T(y), f(-,v), is concave. Then from (4.1) and Theorem
2, we have

max  min(0(y,v),n(z,9)) = mip max (6,(y,v), (=, y)) 2 0.

Since T'(y) is compact, 3v € T(y) such that
(6s(y,v),n(z,y)) 2 0, Vz €K,
ie., v eT(y) such that |
(8, {0y, v);n(z,9))) 20, Vz € K.
Analogously, it follows that

O(y,v),n(z,)) ¢ int C(y), ie, (6(y,v),0(z,9)) Zimcyy 0 , VzeK.
Therefore, y € E is a strong solution of the GVVLI. O
Theorem 7. Let X, Y, X*, K, E, D, C, W and 1) be same as in Theorem

6. Assume that the condition (jii) of Theorem 6 and the following conditions
are satisfied:
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(i) 9: KxD- L(X,Y) is continuous in the second argument and affine
in the first argument; ‘

(i) T : K=3D is compact-valued, V-hemicontinuous and weakly
H(s) — n-pseudomonotone with respect to 8 for some s € C} \ {0},
where H(s) # Y.

Then there exists a solution y € E to the GVVLI.
If, in addition,

(iii) Vz € K, T(2) is convex;
(iv) 6(-,-) is convex in the second argument;
(v) Vz € K, z+— (6(2,w),n(z, 2)) is concave.
Then, there exists a strong solution y € E to the GVVLL
Proof. It follows from Theorem 4 that there is a solution y € E of the

GVVLI. By the same arguments as that in Theorem 6, we can show that y
is a strong solution of the GVVLL 0

Theorem 8. Let X, Y, X*, K, E, C, W, n be same as in Theorem 6.
Assume that the condition (iii) of Theorem 6 and the following conditions
. are satisfied:

(i) D is a compact subset in X*;

(ii) 6 : K x D =-L(X,Y) is continuous in both the arguments and affine
in the first argument;

(i) T : K =3 D is a multivalued map such that its graph is closed.

Then, there exists a solution y € E to the GVVLI.
If, in addition, conditions (iii), (iv) and (v) of Theorem 7 hold, then there
exists a strong solution y € E to the GVVLL

Proof. It follows from Theorem 5 that there is y € E which is a solution of
the GVVLI. Again by the same arguments as that in Theorem 6, we see that
y is a strong solution of the GVVLL =]
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