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ON GENERALISED MIXED CO-QUASI-VARIATIONAL
INEQUALITIES WITH NONCOMPACT VALUED MAPPINGS

RAIS AHMAD, QAMRUL HASAN ANSARI AND SYED SHAKAIB IRFAN

In this paper, we consider generalised mixed co-quasi-variational inequalities with
noncompact valued mappings and propose an iterative algorithm for computing their
approximate solutions. We prove that the approximate solutions obtained by the pro-
posed algorithm converge to the exact solution of our co-quasi-variational mequa,hty
Some special cases are also dlscussed

1. . INTRODUCTION AND FORMULATION

The projection iterative method is one of the most important and useful meth-
ods for finding the approximate solutions of fixed point ‘probl'ems, and variational and
quasi-variational inequality problems; See for example 5, 6, 8, 9, 10, 11, 13, 14] and
references therein. In most of the papers appearing in the literature on this topic, the
metric projection operators, as in Hilbert spaces, are used. But it is impossible to use
the metric projection operator in the setting of Banach spaces because these operators
are not nonexpansive. Recently, Takahashi and Kim [15] used the sunny nonexpansive
retraction to set up an iterative scheme for finding a fixed point of a nonéxpansive and
nonself mapping in Banach spaces. Inspired by the work of Takahashi and Kim [15], Al-
ber and Yao [2] used a sunny nonexpansive retraction to construct the projection iterative
method for finding the approximate solutions of a class of multivalued quasi-variational
inequalities in Banach spaces. They gave the name co-quasi-variational inequality for a
quasi-variational inequality in Banach spaces and presented an iterative algorithm. They
also proved several convergence results for approximate solutions obtained by their algo-
rithms and in particular several existence results were obtained. Recently, Chang [4] also
studied the existence and convergence of solutions of the Mann and Ishikawa iterative
processes for a class of variational inclusions with accretive type mappings in Banach
spaces. The mathematical approach in [4] is quite different from the one used by Alber
and Yao [2]. ;
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Let B be a real Banach space with norm ||.||, B* its topological conjugate space
with norm ||.{|,-and (z, f) be a pairing between z € B and f € B*. Given single-valued
mappings f,g,p,G : ‘B — B and multivalued mappings M, S,T,K : B — 22 such that
Yz € B, K(x) is a nonempty, closed and convex set, we consider the following generalised
mixed co-quasi-variational inequality problem :

Findz € B, u € M(z), v € S(z) and w € T(z)
such that G(z) € K(z) and
(pw) - (f0) - 9()), J(z - G(@))) >0, ¥zeK(a),

where J : B — B* is the normalised duality mapping and 22 is the family of all nonempty
subsets of B.
The nonlinear operator J : B — B* is called normalised duality mapping if

1zl = llz] and {z, J(2)) = lell%, ¥ = € B.

For further detail of the duality mapping J, we refer to [1].
Let us see some special cases of generalised mixed co-quasi-variational inequality
problems. '
SPECIAL CASES:
(i If p =0, g and M are identity mappings and T is single-valued mapping,
then generalised mixed co-quasi-variational inequality problem reduces to
the problem of finding z € B and v € S(x) such that G(z) € K(z) and

(1.1) <T(x) — ), J(z ~ G(x))> >0, VzeK(z),

A problem similar to (1.1) is recently considered and studied by Alber and
Yao [2]. “

(ii) If B is a Hilbert space, f,g and M are identity mappings, G(z) = p(z) and
K(z) = K V z € B then generalised mixed co-quasi-variational inequality
problem becomes the following generalised variational inequality problem
considered and studied by Verma [16]:

Find z € B, v € S(z) and w € T(z) such that
(p(x) - (v-w),z—-p(z)) >0, VzeK.
It is clear that the generalised mixed co-quasi-variational inequality problem includes

many kinds of quasi-variational inequality problems, variational inequality problems and
complementarity problems as special cases, such as (8, 13, 16, 17).



[3] ‘Co-quasi-variational inequalities 9

In this paper; we extend the approach of Alber and Yao 2] to a more general
and unified problem called the generalised mixed co-quasi-variational inequality problem.
We suggest and analyse an iterative algorithm to compute the approximate solutions of
the generalised mixed co-quasi-variational inequality problem with noncompact valued
mappings. We also prove convergence result for the approximate solutions obtained by
the proposed algorithm.

2. PRELIMINARIES

We recall that the uniform cbnvea:ity of the Banach space B means that for any
given € > 0 there exists 6 > O such that Vz,y € B, |lz|| < 1, Iy € 1, lz~=y|l = ¢
ensure the following inequality

=+ ull < 2(1 - 5)
The function |
. T+
dp(e) = inf{1 - 22U o =y =1, oy =)

is called the modulus of the convezity of the space B.
The uniform smoothness of the space B means that for any given € > 0, there exists
4 > 0 such that

THyli+llz -yl )
lo+ sl el ¢y
holds. The function :
z+y|l+llz—y
pa(t) = sup{IZ ¥ ¥l Uz wll MWJMM—4

is called the modulus of the smoothness of the space B.

We remark that the space B is uniformly convex if and only if §5(¢) > 0 for alle > 0,
and it is uniformly smooth if and only if %1_1)13 t~1pp(t) = 0. The following inequalities will
be used in the proof of our main result.

PROPOSITION 2.1. ([1]) Let B bea unifonﬁly Smooth Banach space and J be
a normalised duality mapping from B to B*. Then, V z,y € B we have

@ le+yl? < ll=l* + 2(y, Iz +)),
(i) (z-vJ@)~JW)) < 2d%p(4)lz - yll/d) where d = \/(Jlz|[* + ly|[?) /2.

We next recall the following definitions.

DEFINITION 2.1: A mapping A : B — B is said to be

(i) strongly accretive if there exists a constant %4> 0 such that

(A(z) - J(z-y))> 7IIw yll2 Vz,y € B;
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(i) Lipschitz continuous if there exists a positive constant 8 such that
| 4(z) - A@)|| < Bllz - yll, ¥ 5,y € B.

DEFINITION 2.2: A multivalued map S : B — CB(B) is said to be H-Lipschitz
continuous if there exists a constant A > 0 such that

H(S(2),S®) < hllz~yl, Y2,y € B.
where #(.,.) is the Hausdorfl metric and CB(B) is the family of all nonempty closed
bounded subsets of B.

. DEFINITION 2.3: ([3, 7]) Let B be a real Banach space and 2 a nonempty closed
convex subset of B. A mapping Qq : B — Q is said to be

(i) retraction on Q if Q4 = Qq;
(i) nonezpansive retraction if in addition

lQaz — Qayll < llz —yll, ¥ z,y € B;

(i) sunny retractionifV z € B,
Qa(Qaz +t(z — Qa)) = Qqz, VtER.

The following characterisation of a sunny nonexpansive retraction mapping can be found
in [8, 7].

PROPOSITION 2.2. Qq is a sunny nonexpansive retraction if and only if
VzeBandVye€ .
A (z - Qaz, J(Qaz — ) > 0.

From the above Proposition 2.2, we have the following retraction shift equality.

PROPOSITION 2.3. Let B be a Banach space, 2 a nonempty closed and convex
subset of B and m : B — B a mapping. Then V 1 € B, we have

Qaim(x)T = m(z) + Qa(z — m(z)).

3. AN ITERATIVE ALGORITHM

In this section, we first derive some charactensatlons of solutions of generalised mixed
co-quasi-variational inequality problem.

We mention the following characterisation theorem for the solution of generalised
mixed co-quasi-variational inequality problem which can be easily proved by using Propo-
sition 2.2 and the argument of {8, Theorem 3.1] and [1, Theorem 8.1].

THEOREM 3.1. Let B be a Banach space, f,g,p,G: B — B single-valued map-
pings, M, S,T : B — C B(B) mappings and K : B — 22 multivalued mappings such that
V z € B, K(z) is a nonempty, closed and convex subset. Then the following statements
are equivalent:
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(i) The set of elements (z,u,v,w) such that z € B, u € M(z), v € S(z) and
w € T'(x) is a solution of generalised mixed co-quasi-variational inequality
problem.

(iqi) z€ B, ue M(z), ve S(z), we T(z) and
G(a) = Qx [G(a) - 7 (pw) - (f(0) ~ 9(w)))| for any 7 >0,

Combining Proposition 2.3 and Theorem 3.1, we obtain the following result.

THEOREM 3.2. Let B be a real Banach space, X a nonempty, closed and con-
vex subset of B. Let f,g,p,m,G : B — B be single-valued mappings, and M, S,F : B
- CB(B) mappings and K : B —. 2P multivalued mappings such that ¥ z
€ B, K(z) = m(x) + X. Then the set of elements (x,u,v,w) such that x € B, u
€ M(z), v € S(z) and w € T(z) is a solution of generalised mixed co-quasi-variational
inequality problem if and only if '

z=z—G(z) +m(z) + Qx [G(z) - T(p(u) - (f(v) - g(w))) - m(z)], for any 7> 0.

To compute the approximate solutions of generalised mixed co-quasi-variational in-
equality problem, we propose the following iterative algorithm.

ALGORITHM 3.1. Let K(z) = m(z) + X, where X is a nonempty, closed and convex
subset of B and 7 > 0 be fixed. Let f,g,p,m,G : B — B be single-valued mappings and
S,M,T : B— CB(B) be multivalued mappings. For glven ug € M(zo), vo € S(xo) and
wo € T'(zo), let

xy = zo — G(z0) + m(z0) + Qx [G(zo) - T(P(Uo) (£ (vo) — g(wo) ) m(zo)]

Since ug € M(zo) € CB(B), v € S(zo) € CB(B), wy € T(x,) € CB(B), by Nadler
[12], there exist u; € M(z1), v € S(zy), w; € T(z;) such that

lup —wi]) € (1 + I)H(M(xo), M(:l:l)),
llvo — w1l < (14 D)H(S(z0), S(z1)),
| <

llwo — wall < (1 + 1)H(T(zo), T(21))-

Let
23 = 21 = Glz1) + m(ea) + Qx [Glar) = (p(ur) - () - g(wr))) = m(z)].
By induction, we can obtain the sequences {z,}, {us}, {vn} and {w,} as

(3.1) Tny1 =2y — G(Tn) + m(z,) + Qx [G(-Tn) - T(P("u) - (f(”r}) - g(wn))) - m(a:n)],
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un € M(2h); [|un = ]| 1+ (n+ 1)) H(M(@a), M(Zn31)),
o€ Sl = vl € (14 (04 1)) H(S (), S(ome),
I < (

wy, € T(z,), ”wn - wn-f—l' 1 + n+ 1) ) (T(xn)’ T(wn+1))a

n=0,1,23,....

Finally, we prove that'bhé approximate solutions obtained by Algorithm 3.1 converge
to the exact solution of generahsed mixed co-quasi-variational inequality problem. We
also prove the exiatence of ) solutlon of generahsed miked co-quam-vanatlonal inequahty
problem. : . o * 2o R ¢ oL Ty

THEOREM 3. 3 “Let:B be & real umformly smooth Banach space with the modu]e’
of smoothness 75(t) €' Dt* for some D'> 0: Let X'bea nonempﬁy, closed and convex
subset of B, f,g,p;m,G: B —+'B single-valued’ mappmgs and M,8,T": B - CB(B)
and K : B — 2B multivalied mappings such thatV z € B K (a:) m(a:) 4+ X. Suppose
that the following conditions are satisfied: R AN

(i) f,g andp are prsdutz continuous with correspondmg constants €, r and
g, respectwely

(i) G .is both strongly accretive with constant v and szscbztz continuous with
constant ¢. oo . :

. (iii). M, S, T are H-Lipschitz continuous Wltb -corresponding constants s; h and

: d, reSpectwer ‘ .

(1v) m is Lipschitz continuous wztb consta,nt 4. »

(v) 0<2(1-27+64D8%)"2+ 20+ 105+ [1+ r(gh ~ 1d)] <l
Then there exists a set of elements (r,u, v, w) such thatz € B, u € M (z), v € S(z) and
we T(x) ‘which is a solution of genera.llsed mixed co-quasi-variational inequality problem
‘and Tp = T, Up — U, Up = U, Wy, — W 88 1 — 00, Where {za}, {un}, {vn} and {w,,} are
the sequences obtained by Algorithm (3.1). v

ProoF: By the iterative scheme 3.1 and Proposition 2.3, we have

Zas1 — Tl = ||z

= G(an) + m(za) + Qx[G(za) = (p(un) ~ (£(un)
62 ~g(w) = m(e)] = (Es ~ Cana)) + m{an-)
~Qx [G(@n1) = 7 (plun-2) = (f(va-1) = g(un-1)) ) = m(zn1)
30 % Zn-1 = (G(@n) = G(zn-1) || + 2|m(za) = m(zass)|
Zn = Enet = (G(@n) = Glan-1))|| + 7l|p(tn) ~ ()]
1+ 7(f(tn) = f(tn=1)) = 7(g(wn) = g(wa-)
Zn = Tn-1 = (G(2n) — G(2n-1))

<

+2||m(zn) - m(:c,.-ﬂ“
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‘*27,,..1+T(f(vn)"" (‘vn 1)

+’r”

~(g(un) ~ g(un-) ll

By Proposi;ti_on 2.1, we vhaye (see, for example, the p;qof of [2, Theorem. 3))

(3.3)

2 ,
Zn — Tt = (G(Zn) = G(Tn-r)) “ < (1= 29+ 64D8%) 2, — e 2.
It is clear that
(3.4) ”m Zy) ~ m(:v,,_l)“ O|zn — z,,_1||

Smce M,S and T are #H-Lipschitz contmuous, and f,g. and p are Lipschitz continuous,
we have

4

(35) ”p(un - (un—l)” < a”“n un—l“ 03(1+ )”w"'—x""lll’ '
(38) (1) = Fon-1)]| < Ellon — vneal < £8(1+ l)nz,.' “anl,
(3.7) l9(wn) = 9(was)|| € rllwn — wnall < rd(1+ )Ilwn-wn—lll

From (3.6)—(3.7), it follows that

1) -]

68 <lon=acall 7)1 (00) = £ = ilgCm) = glamnon)|
Sl = anall + €A+ 1/mlfen = En] ~ rrd(1+ Hmllan =l
= [+ 71+ 1/m)(h ~ rd)]lzn = 2uia]l. ”

Combmmg (3.2)-(3. 5) and (3 8), it follows that -
“xn+1 = xn“ & th“wn - xn-1”>

where t, = 2(1— 27 + 64D¢52)1/2 + 20 + ms(l + 1/n)) + [l + r(1 + 1/n)(£h - rd)]

- Let t.= 2(1~ 27+ 64D6%)Y2 + 20 + 75+ [1 +7(€h—rd)]. Then t, — t.asn — co.
It follows from (v) that t < 1. Hence t, < 1 for n sufficiently large. Consequently {zn}
is & Cauchy sequence in 'B.: Since B.is eomplete, we cam‘ let z; — z € B. Now-we prove
that u, — u € M(z), v, > v € S(a:) and w,. —) w e T(z) In fact 1t féllo\ws from
Algorithm 3.1 that L

= el € (I + )8"% gl
' -
Ion =~ vnall < (14 )h||xn~mn_1u,«
. 1 J k
Ion ~ il < (4 2l =zl
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which implies that {u,}, {vs} and {w,} are also Cauchy sequences in B. Again, since B
is complete, we can let u, — u, v, = v, w, & w as n — o0o. Since Qx,G, f,g9,p, M, S, T
and m are continuous in B, we have

z =2~ G(z) + m(z) + Qx [6(@) - 7(p(w) - (£(v) - 9(w))) - m(z)].
Further, we have
d(v,5(z)) = inf{llv -yl : y € S@)}
llv = vall + d(vn, S(x))

lv — vall + H(S(24), S(z))
< [lv—=vul| + hl|z, — z|]| > 028 n > o0.

<
<

Hence v € S(z). Similarly we can prove that u € M(z), w € T(z). The result then
follows from Theorem 3.2. ]

REMARK 3.1. As a special case of Algorithm 3.1, we can easily derive an iterative algo-
rithm, similar to the algorithm proposed in [2], for finding the approximation solutions
of problem (1.1).
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