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A FIXED POINT THEOREM AND ITS APPLICATIONS TO A
SYSTEM OF VARIATIONAL INEQUALITIES

QAMRUL HASAN ANSARI AND JEN-CHIH YAO

In this paper, we first prove a fixed point theorem for a family of multivalued maps
defined on product spaces. We then apply our result to prove an equilibrium existence
theorem for an abstract cconomy. We also consider a system of variational inequalities
and prove the existence of its solutions by using our fixed point theorem.

1. INTRODUCTION

By using a partition of unity, very recently Lan and Webb [8] have obtained some
fixed point theorems for a family of multivalued maps defined on product spaces without
compactness assumptions on the domain and range sets. Ding, Kim and Tan [6], Wu
[13], Wu and Shen [14| and Yannelis and Prabhakar [15] have also studied such types
of fixed point thecrems with compactness assumption on the range set, which are well
suited to prove equilibrinm existence theorems for an abstract economy.

Pang {9] showed that a variety of equilibrium models, for example, the traffic equi-
librium problem, the spatial equilibrium problem, the Nash equilibrium problem and the
general equilibrium programming problem can be uniformally modelled as a variational
imequality defined on the product sets. He decomposed the original variational inequality
into a system of variational inequalities which are easy to solve. He also studied the
convergence of such methods. The method of decomposition was also used by Zhu and
Marcotte [16] to solve a variational inequality problem defined on a set of inequality con-
straints. By gencralising the concept of pseudomonotonicity te the product sets, Bianchi
[1] proved the existence of solutions of the system of variational inequalities, that is, a
family of variational inequalities defined on a product set.

Inspired by the system of variational inequalities, in the next section we establish a
fixed point theorem for a family of multivalued maps defined on product spaces, which
generalises the results in [6, 8, 14] and {15]. In Section 3, we apply our fixed point
theorem to prove an equilibrium existence thecrem for an abstract economy. In Section
4, we consider the system of variational inequalities and prove the existence of its solutions

by using the result of Section 2.
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We shall use the following notation and definitions. Let A be a non-empty set.
We shall denote by 24 the family of all subsets of A. If A is a non-empty subset of a
topological vector space X, we shall denote by intyx the interior of A in X. If Ais a
subset of a vector space, co{ A} denotes the convex hull of A,

Let X and Y be two topological vector spaces and T : X — 2¥ be a multivalued
map. Then T is said to have the iocal intersection property |14] if for each x € X with
T(z) # @, there exists an open neighbourhood N(z) of z such that [} T(z) # .

zZEN(E

The multivalued map 7 is said to be transfer open-valued [4] if for a}my e X, yc
T(z) there exists an z € X such that y € intyT(z).

The inverse of T, denoted by T, is the multivalued map from R{T), the range of
T, to X defined by

z €T 'y) ifandonlyif yeT(z).

2. FIXED POINT THEOREM

Let I be an index set and for each i € I, let E, be a Hausdorff topological vector
space. Let {K,};s be a family of non-empty convex subsets with each K, in E;. Let

K=T]lK and E =[] £,
i€l el

THEOREM 1. Foreachi € I, let 5, T, : K — 2% be two multivalued maps.
Assume that the following conditions hold. ’
(i) Foreachi€ I and each z € K, co(S,{z}) C T,(z) and Si(x) is non-empty.

(i) Foreachie I, K =|J{intxgS7'(z:) : 2, € K.}

(ili) If K is not compact, assume that there exist a non-empty compact convex
subset €} of K, and a non-empty compact subset I} of K such that for
each £ € K\ D there exists y, € C; such that x € intKSt-_'@i),

Then there exists T € K such thatT € T(T) = H T;(x), that is, T, € T.(T} for each i € I,
where T, is the projection of T onto K,. «

PrROOF: For each i € I, we define a multivalued map G, : K, — 25 by
Gz} ={z € K :2 ¢ intxS7'(x,)} = K \intx S (z).

Then G, satisfies the following conditions:
(a) For each z; € K,, G.(z,) is closed in K.
(b) Foreachiel, [) G.(z,)is compactin K.
xeC,

Indeed, if K is compact. [ G,(z,) is compact since [} G,(z,} is closed
£,e0, T €0,
in K by {a). If K is not compact,

[] Gi(z) = [ {zeK:z¢gintxS (z)} C D by (ifi)

neC, 5, eC,
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and thus is compact.
(c) Since for each i € I, K = U{intgS;'(z:) : z. € K.}, we have
n G,‘,(II") = n {K\il’lt;{S’_l(ig)} = @, for each i € 1.

£ K, ek,
Now. we shall show that there exist a,,- - ,ay, € K, such that
i
(1) ( N Gi(i?i}) N (ﬂ G:‘(aik)) =0
T.EC, k=1
Suppose that {1) is not true, then for every finite set {y;, - ,y.} C K;, we have
ﬂ
OEDROEDEL
20, \J=1

Let Ply) = ( AREEY ) N (G\(y)) for y € K. Then the family {P(y) : y € K,} has
T.€C,
the finite intersection property. Note that P(y) is compact in K for each y € K, because

(N G.(z,) is compact and G,(y) is closed in K. Tt follows that () P(y) # @ and thus
ned, yEK,

(N G:(z) # ® which is a contradiction to (c).
YEK,

By (1), we have

(2) (UthS :c,) (UthS a,k))

Iy CC:
Let F, = co(C, U {a,1,--- ,a4,}). Then F, is compact in K,. Let F =[] F,, then Fisa

ed
compact subset of K. By (2), we have

(3) Fc ( U im,(s;l(x,-)) v (U int,(sﬁ(a,k)),

r,e0; k=1

Since F is compact, there exist by, -+ by, € C, such that

(4) FcC (U intKS;l(bl;J)) U (U intKS,,'l(am)j-

4=1 k=1
Let {e, s em b = {@i, - @, ba,-- - by, }. We rewrite (4} as follows
H
(5) F C | JintkS (cw)-
k=1

Let X, = co({c,;l, s+ G }) and X = ] X,. We denote by A, the vector subspace of E,
iel
generated by X,. Then A, is locally convex since it is a finite dimensional subspace. We
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note that X is a compact set in [] Aq, and X C F C U intx S {c,s). Therefore
L7

XcC (U intK.S"-_l(c,-k)) NnXc U intx S ew) C X

k=1 k=1

i,
and hence X = |J intxS; (ci).
k=1
Since X is compact, there exists a partition of unity {g;,- - , ¢in;} subordinated to

this finite subcovering such that
(I) foreachk=1,---,n; gw:X —[0,1] is continuous,
(II) foreach k =1,--- ,n;, gaf{z} =0, for z & int xS, (cu),
(IIf) for each z € X, :Z‘ gi(z} =1.
=1

For each 1 € 7, we define a map f, : X — X; by fi(z) = Z gie(x)cg, for all z € X.

Obviously, for each 7 € I, f; is continuous function. For ea.ch z € X and each k with
gu(z) # 0, we have z € intxS7 (i) C S7!(ci) and so that ¢ € Si(z) for each ¢ € 1.
By (i) and the definition of f;, we have for each i € I, fi{x} € co(Si(z)) C Ti{z), for all
e X.

Define a map A : X — X by h{z) = (f;(z))‘a. Since for each z € X, f(z) € X,,
it follows that % is well-defined and continuous. By Tychonoff’s fixed point theorem [12],
h has a fixed point T = (T;)er € X. This implies that T; = f;{Z) for all { € I. Since for
each v € I, f,(z) € Ti(z) for all z € X, we have 7; € Ti(T). 1}

REMARK. (&) Theorem 1 generalises in [6, Theorem 2] and [14}, respectively.
{b}) The assumtion (ii} in Theorem 1 can be replaced by any one of the following
conditions:
{iiy For each i € I, S ! is transfer open-valued.
(ii)* For each 7 € [, S, has the local intersection property.
{ii}" For each i € [ and 7; € K;, S;'(z;) is open in K.

Proor: For the proof of (i)', we refer to [4, Lemma 2.1].
(i1} Since for each ¥ € [, Si(z) # @, for all x € K, there exists a neighbourhood N(x)

of x such that [} S(2)# 0. Let g € [ Si{z), then y € Si(2), for all z € Ni(z)
EM (1) zEN(z)

and hence z € S7'(y:), for all 2 € Ni(x). Therefore, z € N,(z) C S;7'{w), so that
z € intxS; ' (y,). This implies that K C | J{intxS; ' (1) : 4 € Ki} C K, and hence
K = J{intx S () : v € Ki}.

(i) From assumption () in Theorem 1, we have K = | J{S;'(s.) : v, € K.} and since
for each y; € K;, S7'(3) is open in K, we get K = [ J{intxS; (33} : 41 € K;}. 1;
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When the index set [ is a singleton, we have the following result which generalises
the well-known Browder fixed point theorem (3], [10, Theorem 1], [14, Corollary 3| and
[15, Theorem 3.3].

COROLLARY 1. Let K be a non-empty convex subset of a Hausdorff topological
vector space E, and let 8,7 : K — 2% be two multivalued maps. Assume that the
following conditions hold.

(i) Foreachx € K, co(S(z)) C T(z) and S{z} is non-empty.
(i) K =|}{intxS 'y} :y € K}.
(iil) If K is not compact, assume that there exist a non-empty compact convex
subset C of K and a non-empty compact subset I of K such that for each
z € K\ D there exists ¥ € C such that r € intx S™1{7).
Then there exists T € K such that T € T(T).

ReEmaRK. The assumption (ii} in Corollary 1 is equivalent to the following conditien of
Tarafdar [10]:

(i) Foreachy € K, S”'(y) = {x € K : y € S(x)} contains a relatively Open
subset O, of K {0, could be empty for some y) such that | ) O, =
yeEX

3. EQUILIBRIUM EXISTENCE THEOREM

In this section, we prove an equilibrium existence theorem for a non-compact abstract
economy with an infinite number of commodities and an infinite number of agents.
Let f be a (possibly uncountable} set of agents. An ebstract economy I' =

(K, A, B, B} [6]. where 4,.B, : K = [] K; — 2% are constraint correspondences
Jed
and P, : K — 2% is a preference correspondence. An equilibrium [6] for T is a point

I € K such that for each ¢ € [,
7, € Bi(z) and A(T)NPR(T) =0

When A, = B, for each ¢ € I, these definitions of an abstract economy and an
equilibrium coincide with the standard definitions, see for example (2] and [15].

THEDREM 2. Let {K,}ic; be a family of non-empty convex subsets with each K,
in a Haunsdorff topological vectar space E; and let I' = (K, A;, By, P;} be an abstract
economy. Assume that the following conditions hold.

(i} Foreachi € I and eachz € K, co(A;(z)) C B,(z) and A,(z) is non-empty.
(i) Foreach: € I, K = |J intg[{{coB) Y x) U W.} N A7 ()], where

nEK,

W,={ze K:Alz)NPlz) = B}
(iii) For each i € I and cach T € K, 1; ¢ co(P(z)).
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(iv) If K is not compact, assume that there exist a non-empty compact convex
subset C; of K; and a non-empty compact subset D of K such that for each
z € K\ D there exists §; € C; such that z € intg [{(coP) ™ (m) U W} N
A7)
Then there exists a point T € K such that T; € B{(T) and A{T)NF{T) =0, foralli e I.
PROOF: For each i € I, let Vi = {z € K : Ai(z) N P(z) # 0} and for each z € K,

let I(z) = {i € I : A;{(z) N Pi(x) # B}. For each 4 € I, we define two multivalued maps
S, Ti: K — 25 by

__} coPi(z) N A(z), forie I{x)
Silz) = { Ad(), for i ¢ I{z)

and

_ ) coPi(x) N By(x), foric I{zx)
T(z) = { Bi(z), for i ¢ I(x).

Then for each ¢ € I and each z € K, co(Si(z)) C T;(z) and Si(z) is non-empty.
Now for each i € I and y; € K|,

ST ) = [{{eoP) M) N AT (W)} nVi] U (A7 w) N W]
= [(coP) 7 () M A7 ()| L (A7 () N W]
= [{coP) ™ {y) U W] 0 A7 (w)-

From (ii), we have

K= || intg[{(coP) " {m} W} 0 A7 g = (] intxc S (1)

ylEK‘ y\EKI

Hence all the conditions of Theorem 1 are satisfied, therefore there exists T € K such
that T; € T,(Z) for all ¢ € I. By (iii) and the definition of 7}, we have 7, € B,(T) and
AT NP(T) =0, foralls € I. a

4. SYSTEM OF VARIATIONAL INEQUALITIES

Let { be an index set and for each ¢ € I, let E; be a Hausdorfl topological vector
space with its topological dual E;. Let {K,},¢; be a family of non-empty convex subsets
with each K, in F,. Let K = [[K;, K*= [] K, and E =[] E; Foreachiel,

il 1#4, el i€l
let A, : K — E} be a given function. Then we consider the system of variational

inequalities (in short, SVI) which is to find 7 = (7,,7*) € K such that for each i € [,

(6) (A4i(@), 1. — %) 20, forall y, € K,,
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where (-, -} denotes the pairing between E; and E,.

The (SVI) was considered by Pang [9] with applications in equilibrium problems. He
showed that the traffic equilibrium problem, the spatial equilibrium problem, the Nash
equilibrium problem and the general equilibrium programming problem can be modelled
as the (SVI). He also investigated the local and global convergence of various iterative
methods for solving the (SVI). But he did not discuss the existence of solutions of the
(SVI). Later, Bianchi {1] proved the existence of solutions of the (SVI) by generalising
the concept of pseudomonotonicity to the product sets and using the Fan-KKM Theorem
[7] The (SVI) was also studied by Cohen and Chaplais {5], and Zhu and Marcotte [16].

First we shall prove an existence theorem for a more general system.

THEOREM 3. Foreachi g€ I, let f; and g, be two real-valued functions defined

on K x K,. Assnme that the following conditions hold.
(i) Foreachic l. z— fi(z,y,) is upper semicontinuous on K, for all y, € K,.
(i) For each i € I and cach finite subset {y!,---,y"} of K, we have
filz, 7} < 0, forall = 1,--- ,n imply g{z,%;) < 0, where §, = ‘Z‘ oy,

=1

n
o’ z0forallj=1, ,nmand } o = 1.
=1

(iii) Foreachielandallz e K, z; € K,, g(r,z,) 2 0.

(iv} If K is not compact, assume that there exist a non-empty compact convex
subset C; of K, and a non-empty compact subset D of K such that for
each £ € K\ D there exists y, € C, such that f;(z,3) < 0.

Then there exists T € K such that foreachi € I, f,(Z,4) 2 0, for ally, € K,.

ProoF: For each y, € K,, we define a multivalued map H; : K, — K by
i(y,) = {z € K : filz,5) > 0}.

Then from (i) we have, for each i € [ and 4, € K,, H,(y,) is closed in K.
Suppose that the conclusion of this theorem is not true. Then for each = € X,

(e Ki: filz,u) <0} ={pmecKi:ad Hlu)} #0, foreachie JCI.
Now, we define two multivalued maps S;, T, : K — 2% by
Si(x) = {w € K. : filz, %) < 0} and Ti(z) = {3 € K, : gi(z, 1) < 0}, respectively.

Then clearly S;(x) is non-empty, for all z € K and each i € J.
Let {y!,---,9"} be a finite subset of K, such that fi(z.y!} < Oforall j=1,--- |n

and r € K. Then from {ii}, we have ¢;(z,%) < 0, where §, = 3 ajyf, a? 2 0 for all
1=1
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n .
2 =1,---,nand ¥ o/ = 1. Hence any convex combination of points of S,(z) lies in
=1

T.(z). Thus co(S.(z)) C Ti(z}, forall z € K and each i € J.
Since Hi(y,) is closed for all g, € K; and each i € J, we have S;'(y,) = {x € K:
filzx, y‘) <0} = [H.-(y,-)]c (the complement of Hi(y) in K) is open in K and hence

intg S (w) = S, (1) for all y, € K;. Since for each z € K, Si(z) is non-empty, we have
K= U SYw = U intgS; (1:). Then S; and T, for each i € J, satisfy all the
HER, WEK;

conditions of Theorem 1. Hence there exists T € K such that & € T,{Z), that is, there
exists T € K such that (T, T;) < 0 for each ¢ € J,which is a contradiction of assumption
(iii). The result is proved. a

THEOREM 4. Foreachi € I, let f; and g, be two real-valued functions defined
on K x K,. Assume that the following conditions hold.
(i) Foreachiel, z— fi(z,v,) is upper semicontinuous on K, for ally, € K;.
(i) Foreachic€ I, fi(z, 1) < 0 implies g,(z,y) < 0, for all (x,4;) € K x K,.
(iii) For each i € I, either f; or g, is quasiconvex in their second variables.
(ivi Foreachielandallz € K, z, € K;, gz, 2z;) 2 0.
(v) IfK is not compact, assume that there exist a non-empty compact convex
subset C, of K; and a non-empty compact subset D of K such that for
each x € K'\ D there exists y; € C, such that f.(z,1,) < 0.
Then there exists T € K such that foreach i € I, f;(T,v.) 2 0, for all y,-- € K;.

PRrOOF: The result will follow from Theorem 3 if we show that co{S,(z}) C Ti(x},
for all z € K and each ¢ € {, where S; and 7; are defined as in the proof of Theorem 3.

Let {y!, -+, 4} be a finite subset of K; such that fi(z,y/) <0, forallj=1,---
Assume that for each ¢ E I, fi; is quasiconvex in the second va.rla.ble Then we have

filz. %) < 0, where 3, = Z oy, o 20, forall j=1,---,nand Z ol = 1. From (it),
=1 =1
we have g;(z,%) < 0 and hence ¥; € T,{z}, that is, the convex combinations of points of

S,(z) lie in Ti(z). Thus co(S,{z)) C T,(z), for all « € K and each i € I.

Now let for each ¢ € I, ¢; be quasiconvex in the second variable. Since f,{z, yf) < 0,
for all j = 1,---,n, from (ii) we have gi{z.9/) < 0, forall j = 1,--- ,n. Since g is
quasiconvex in the second variable, we have g;(x,7,) < 0, and hence %, € Ti{z). Thus
co(Si(z)) € Tu(z), for all z € K and each s € 1. g

REMARK. When 7 is a singleton, Theorem 3 generalises [11, Lemma 2.1] while Theorem
4 reduces to [11, Lemma 2.1).

COROLLARY 2. For each ¢ € I, let A; be a function defined on K into E}.
Assume that the following conditions hold.

(i) Foreachie I, A; is upper semicontinuous on K.
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(i1} There exists a family {g;}ies of real-valued functions defined on K x K,
such that
(a) foreachiel, (Aix), 1 — .} < 0 imply g:(2,44) <0, for all
x € K and 2.,y € K.,
(b) foreachieIandallze K, ; € K., ¢g:(z,z;) = 0.
(i) If K is not compact, assume that there exist 2 non-empty compact convex
subset C; of K; and a non-empty compact subset I} of K such that for
each x € K'\ D there exists §; € C; such that {A;(z), 3 — ) < 0.

Then there exists a solution T € K of the (SVI).

PROOF: For each i € I, we define a real-valued function f; on K x K; by

filz y) = (Aizh o — ), forall (z,3) = ((zu2%), %) € K x K.

Then by Theorem 4, there exists T € K such that

(1)
2]
(3]

(4]

(6]

(7]

[8]

[10]

[11]

(At(f): - El) Z Os for all Y € K,.
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