‘BULL. AUSTRAL. MATH. SoC.” & .. . ..° ¢i: 49340, 47H19, 47104
VoL. 59 (1999) [33-44]

Py

GENERALISED, VARIATIONAL-LIKE INEQUALITIES
AND A GAP FUNCTION

_QH. ANsARI AND J.C. Yao '
“In this: paper, 'we study the existence of ‘solutions of ‘genetatised variational-like -

inequality probiems. by, using. a-generalised. form of the FapeKKM-Theorem.. We - -
. also introduce a gap function for generalised variational-like inequalities.

b dl INTRODUGTION AND PRELIMINARIES -

Let E be a topologlcal vector space with dual E* and Tt <E‘ E) be thie dual
system of E"‘ and E We denote by 2x the farmly of all noneinﬁty subsets of a set
X 'and by F (X ) the fsm1ly of sll nonempty ﬁmte subsets of X If X is a subset of a
topologlcal vector space E, we ‘shall’ denote by X the closure of X in'E, and’ by co(X)
the convex "hul'l of X Let C' a.nd K be nonempty subsets df E a.nd E*,';'espectlvely

then we conS1der the followmg generahsed vanatzonal—hke mequahty pro‘blems

PROBLEM 1. Find] a:éCand sET(E) stich that Golar et G
(1)‘ (o(x,s) nmy))go for all - yEC

The vector T is called a strong solutzon of Problem 1 We denote by S (Pl) the set of
all such vectors T. . o .

PROBLEM 2. Find T € C such that for each y € C, there exists 5 € T(Z) such that
@ (@9 aE <.

The solutlon z of thls p;poblem 1s ca.lled a weak solutwn of Problem 1 We denote by
S(P2) the set of all solitions of this problem.
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PRrOBLEM 3. Find 7 € C such that
@ <ew<f V) <0, forall yEC and teTW)
[ SR

We denote by S(P3) the set of all 1ts solutxons , (

Inequalities (1), (2) and (3) are known as generahsed variational-like inequalities
(in short, GVLI). Problem 1 was introduced by Parida and Sen [13] in finite dimensional
spaces: 'They also-showed its relation with convex mathematical programming.. It was
further studied by Yae [19, 20] with applications in complementarity problems.

When 6(z,s) = s, for any « € C, Problem 1 was consideréd by Boss [1 (1], Ding [6]
and Siddiqi et al [17].

When 6(z, s) = s and 7(z,y)= z ~y, for any z,y'€ C and s € T(z), the above
‘ three problems wete studied by. Crouzeix [5] in the settxng of ﬁmte dlmensmnal spaces.
In th1s case, Problem 1 wa.s studled for example by Browder 12], howdhgry and Tan
(3, :] Dmg and. Tarafda.r [ 1, Fang and Peterson [9] Salgal [14] Shlh and Tan [15]
Slddel and Ansan [16] Tan [18] Yao [21], and Yen [22] "
, , In Sectlon 2 we ﬁrs'c prove that K (Pl) s (P2 S(P3) under certam cond1t1ons
Then we deﬁne a gap ,functxon [10] whlch prov1des an optlmlsa,tlon problem formulatlon,
for the generahsed va.rxatlonal—llke mequahty (GVLI)( ) In Sectlon 3, we cons1der a
more genera.l problem which includes Problem 2 as a spemal case.

Let C and K be nonempty subsets.of £ and E*, redpectively. Let. ¢ : K xCxC =
R be a function and T : C — 2K be a multifunction. Then we consider the followmg
problem known as a generalised implicit variational problem:
(GIVP) Find T € C such that for each y € C, there exists 5 € T(Z) such that
(4) ¢(3, T, y) <0

" We prove the existence of its solution by using a result of Chowdhury and Tan (3]

which is a generalised form of the Fan-KKM Theorem [8]. As an application, we use
our results to prove the existence of solutions of (GVLI)

. Let X, Y be subsets of a vector space E such that co(X) C Y. Then the multi-
function F : X — 2V is called a KKM—map 1f for each A e .7-' ( j, co(A) C %J F(:c)

The graph of F, denoted by G(F), is
' Q(F) = {'(:r,vy)'e XxY:zeX y €Fz)}.

We shall use the following result of Chowdhury and Tan (3] in proving our main results
in Section 3. :
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THEOREM A. Let C be a nonempty convex set in a topolagical: vector.space E.
Let G C I 2C be a KKM-map such that .
(1) G(yo) is compact for some yo € C ey e
(if) for each A € F(C). with,yo € A and each y € co(A), G(y) N co(A) is
closed in co(A), and
(iii) for each A € F(C) with yo € A,

( N G(y))r'tco(A) ( N G(y)ﬂco(A)

UECO(A) y€Eco(A)
Then nG(y);ew R
yeEC . : LT L

The following Kneser minimax theorem [12] will»be ‘used ‘in Sectwnz

THEOREM B. Let X be a nonempty convex subset of a vector space, and let Y
be a nonempty compact convex - subset of a ' Hausdorff topo]ogzcal vector space. Suppose
that the functional f X xY — R issuch that, for each fixed € X, f(z, -) is lower
semicontinuous and convex, and for-each fixed y €Y, f(-,y) is concave. Then

min sup f(z,y) = sup min f(z,y).
y€Y z€X z€X yeY
2. A GAP FUNCTION For (GVLI)
Throughout in this paper, unless specified cherw;se, E is a topological vector
space with dual E*. o
‘Let C be a nonempty convex subset of E and K be a nonempty subset of E*.
Given two functions § : CxK — E* and n: CxC — E, the multifunction 7' : C — 2K
is called: .
& (i) n-pseudomonotone with respect to @ if for every pair of points r € K,
sy »yeK and for all s € T'(z), t€ T(y), wehave = v 0o
| (6(z,5), nw;9)) <O implies” (8, 1), n(zv)) < 0
(n) Vihemicontinuous ' with respect to” 8 and-y if for' all 8,y € K,
“0°< X <1 and sy € T(Xy +(1 ~ A)z), there ‘exists s € T(z) such
* that' (G(z, ), 7z, y)) converges to (8{z,8), m(z,y)) as X tends to 0%,
It is clear that S(P1) C S(P2). By using Theorem B, ‘we prove S(P2) C'S(P1):
PROPOSITION 1. Let E be a Hausdorff topological veétor spsce with dual E*
and let C and K be nonempty convex subsets of E' and E*, respectzvely LetT:C —
2K be a compact convex valued multifuriction. Assume that
(a) for each z,y € C, s > (8(z,s), n(z,y)) is lower semicontinuous. and
convex; '
(b) for each z.€ K and s € T(z), y ~ (0(z,s), n{z,y)) is concave. .
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Proor: Let T € C be a solution of Problem 2 Then for each y € C there exists
3 G T(x) such that S ,

(e 8), (3BT y))
Define a functional f: C x T'(Z) = R by

Aoy = (&(w 2, 1@ Yy

By assumption (a), for each y € C, the functlonal s f(y, ) is lower semicontinuous

and convex, and by assumption (b), for each s € T(Z), the functional y ~ f {y,s) is
concave. Thén by: Theordm-B,wé have | o0 w00 o v cnnnin o

mm sug(O(a: s), ;nj(:c y)) = sup mm (0(:1: s), n(m y))

seT(?E) yé
. sug [ce%fﬁ) (0 (Z, s n(Z, y)}]
,gg

Since T'(Z) is compact, there exists a point 3 € T'(%Z) such that

: ~"“’:‘1Eigf(9(i*;‘§)i"n("5,'y))]K 0,

¥

. (O(x s), T,y)) €0, forall ye€C, ’
thatis, TE€.S(PL) . . . . e 1]

PROPOSITION 2. Let G and. K ‘be nonempty subséts of E and E*, respec-
tively. If T : C —+2¥ is n-pseudomonotone with respect to 8, then S(P1) C S(P3).

PRaPQGSITION 3. Let C be a mopempty convex subset.of .E: and K be a
nonempty subset of E*..Let 8(-,-) and () be concave in their first and second
arguments, respectively, such that n(z,z) = 0. for allz' € C. ' If T : C — 2¥ s
V.-hemicontiauous with respect. to 6 and 1, then S(P3) c S(P2)

PR.OQF. Let T € S(P3).. Then
' ( y,t) n(a: y)} for all yG C’ and t eT(y)
By the convexity of C', for any ‘A €(0, 1), we have

Oy +@Q=NTF, 8x), T, Ay +(1—= N)T)) €0, ‘farall sy € T(Ay+ (L= Nz).
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Since 8(-,-) and 7(-,-) are concave in their first and second arguments, respgctivaly,
and n(z,z) =0 for a.ll z G C we have . o B

> (00 + (1= N, 02), n(z A+ (1< NF)) *

> N(0(y, 9, MT9))ok (L = NABE 82 )y nFig))e e f
Dividing by A > 0, we get

> M6y, 8»), 1(Z, y)} + (1 - '\)(9(901 VR (w, y))

Taking A — 0% and by V-hemlcontmulty w1th respect to 0 and 17 of T there ex1sts
3 € T(Z) such that ** "o L T

(O(w 3), n(x y)) 0,
and hence Z € S(P2). v .. o Lot T g ey Sass 1]

NEVERA

By combining Proposxtlons 1-3, we have tbe followmg result

Iet c and K be nonempty convex subsets of E gnd ;E‘, respectwely Le :iC,,——Xf 2K
be compact convex valued, n-pseudomonotone wzth respect to @ and V-bemzcontmuous
with respect to 6 and 1. Let 0(-,-) dhd ﬂ(‘ ‘) 'be Concave i thiéir first énd sécond
argiiniéhts, respectzv‘é}y stich that: {2, Z) =0 forall ke € Betis iy {9(& 8), nzly)),
-for all &/ ye O B lower smcontfnuous and convex, Ther’ S(Pl) “S(P2y *—“S(P3)

“Let € bea nonempty subset of E Then a functional” f CSRU {—-oo +oo} is
called a gap function for (GVLI) if
() f(z) >0, for s’z €C St Eapemeend Vst
Sy (2)-= 0-if:and 'obdy-if ¥ is-@ solutidhiof {GVEE):- ¢ b amnEaT
Now, we define a functional g}C - RU{—oo, +oo} as follows: =~ 3

(5) 9(z) = sup[<0 ¥it)s W, y)) Y€€ and teT(y )]
We also set™ st i e TS st bl T anTati e el e i
fa i’\l”&"""“' £l MF 1ngy('$) aﬂd M‘ﬁ &x 6 C g(z) > m} SRt ‘

THEDREM 2 Let C bea nonempty subset of E and Iet n(w :c) 0 for aIi z E C".
Then 9 as deﬁned by (5) isa gap functzon for ( GVLI)(3)

PROOF (1 Smce (B(z;s n(a: x)) 0forall z €€ and se T(z) we have

6 9@) 20, forall £€C, ...,
(n) Sugpose that :(; € o 1s 8 solutlon of (GVLI)(3), then R

(0(y, , n(m,y)) <0, for all ¢ € T(y), e o
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SHAREEeE T S r e, e e sl it nl o e |
(7) sup (93, ), n(7,)) : uGC and teT(y)]
This implies that.¢{%) € 0. Combining (6} and (7). we get . =~ :
(8) g(?v’) =
Conversely, let g(z) 0 From (5), we have
: o@) > <0(y,t), (z y)) for allw;\yeC and ¢ teT(y) |

and hence
i (8(y, t), n(7, y)) 0, forall yeC and te T(y)

Therefore, T e C isa solutxon of (GVLI)(3) o

. BRooF: gt S(Pa)éﬂn’;lﬂ}en 'om (3)? Vm :o % D

[CEREYy g

. Let. Z-€ Cube a solution of (GVLR(). Then.o(z).= 0. But frggu (), we. ,have
g(sr) »0.forall:z € G, and hence g(z) < g(z) for. all z €.C, Therefore, € M.

; Conversely, assume tha.t Te M Then 9(93) =, 0 and thus € S(P3) Hence
M=8(P3). i \

Combining Theorems 1-3, we have the following, result , e

THEOREM 4. Assumb that all:the hypotheses of: Tahsemm 1 are. samﬁed and if
m=0and M#0, then M= S(P1) = S(B2) =S(PY). .

S0 3, EXISTENCE RESULTS .
We first prove the existence of solution of (GIVP) by using Theorem A.

THEOREM 5. Lét €' be a nonempty convex subset: of E and K be a nonempty
subset of E*, Let P K xC. % C d R be a functzon and T C -—> 2K be a mu]tzfunctmn
Assume that &

10 for each A € .1-'(0) and each :v e co(A), mmgo(s z y) 0 for a11 s €

(:c),
20 foreach A€ .7-‘(0) addd dhch'y € &(A);

G(y)ﬂco(A) fa: c co(A) ’ there exists 5 € T(:c) such thiat (p(s z,y) < 0}

is closed in co(A)
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it 8%  forteach, 4 € F(C) and each 1*, ¥ & co(A) and farievery: net; {&a}ner it
C converging to z*, if there exists.a net {sa} in K wztb Bu Q T(x@) for
all a € T', for which

go(sa, :z:,,, y) 0, for all @ e I‘

then there exists s* € T(:q") such that <p(s x ,y)
49  there exists a nonempty closed and compact subset D of C and z € D
. Silcb th&t o :‘.»J‘}‘; P s, N SR SO H;'

o(s'sa'z) >0, forall '€ C\D: and s.€T(').

Then there emsts TeD sucb that for each y € C there exxsts se T(.'z:) such that

(P(§ f y) ( A Caenal s ool poianan’

" PROOF: We ‘define the mult1funct10n G C —-+ 26' by i A T
G(y) = {s.€C: there exlsts 8€ T m) suc.h that <p(s,a:, 0},I for each. y €C.

We show first that G is a KKM-map
- Suppose that ‘G is not a KKMamap Then for some finite stibmet {yl, ,y,,} of

Cand A >0 forall i=1,...,n with 2)\ =1, we have xo = Z‘A.y. U G(ys).
RN LY T A A
Then,fonall&oEI'(z‘n), o 'L ‘
(80, Z0,%) >0, forall i =1;..5m

and so

| lgnn w(so,m,y.) >0,

which coutradlets the assummmn 10 Hence G 1s a, KKM-map Moreower, we have,

(i) G(z) c D by a.ssumptlon 4° so that G(z) c D =D and, hence G(z) is
compact in C;
(ii) for each)A € F(C) with z € A and each.y€ co(A)s

G’(y) n co(A) {:z: € co(A) there exlsts 8 e T(:v) such that cp(s z, y) }

is closed in co(A) by a.ssumptlon 2° SR
(i) for each A & F(C) with z€ A, if 2.6 {1 [} G@) mco(A) then o €
y€co(A) .
' ( ﬂ G(y)) and z* € co(A), and ‘there i a net {z,} in ﬁf“‘G(y)
y€Eco(A) yE€co(A)
such that z, converges to-z*. Foreach y & co(A}, there existe & net

{sd} in K- with 84.€ T(:c&) for: which
. <p(sa,za,y) 0 for a,llaE I‘
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F:om,assmnmmn 89 there exists s* € T(x‘) ‘swch that <p(s x‘!,y) Q 0.1t follows that
-(‘ Ty e y))h Co(A) ahd henee’ -7 6w

y€Eco(A)

ﬂ G(y)‘;r‘\co(Af)l ( ﬂ GSy?)ﬂco(A)

; '» yEuotA)

By Theorem A, we have ﬂ G(y) 9"= 0. Therefore, notmg that ﬂ G y) CG(2) €

D, there exists T €D mehuthat for each y € C, there exists § E T(a:) such that
¢(3,7,y) < 0. ‘ o : | :
THEOREM 6 Let c be a nonempty convex subset of E and K be a nonempty
compact subset of E*. Let ¢ : K xC.xC > R bea functwn and T C — 2K be a
' mu1t1funct10n such that its graph is closed. Assume that
‘ “fot'éach' A€ F(C) and’ ealh' s € co(A) mincp(s %, y < Oforalls e
T(z); ,
20 foreach. A € F(() and:each y € eo(A) 1p( X ,g) is Iower sem:conmnuous
. on Kxco(A); .

39 foreach A€ F(C) and each 3,y € co(A) and for every net {Zo}aer in
C converging to z*, if there exists a net {s,} in K with 5, '€ T{z,) for

all a € T', for which ' o

‘P(sa,xa,y) 0 for aII ael,

then there exists z* € T(a:‘) such that qp(s z*y) <
T 40 Cihere exists s ﬁonempty cIosed‘ and compact subset D ot’ C’ and zeD
© o sl that v : :

<p(3",icf,<z) >0, . for.all - y-€ C\D a,_nd;‘sf € T(zz’»),., C

Then there exmts zeD sucb that for each y € C’ tbere ex:sts Fe T(“) ‘such that
(p(s z y) S AT P " I ks 1 :
" PrOOP: -If we prove thaé for each A € F(C) with 2 € A and esch € co(A),

G(y) Neo(A) = {z € co,(A) there exists s-€ T'(x) such tbet go(s, z,y) < 0}

i clased in co(A) then from Theorem'§, we ges the result.

Indeed, let {zg}gea be a net in: G{y)N co(A) such that Zp converges to z. Then
z € co(A), because co(A) is compact (see [3, p.922)). Since zg € G(y) N co(A), there
exist sg € T(zg) such that (p(Sp,.’Eg, y) < 0. Since T(C) is contained in a compact set
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 K.yweanay agsume:that sg- converges to some;8'€: K, Then from the closed graph of
T, we have s € T(:v) Since <p( ,*¥y), for-each y € co(A), is: lowar semmontmuous, we
Wi LR e A hmmfw(m»%w)?sp(s, ,y)

and hence z € G(y) N co(A) )88 desued - o ' \ 1]
As apphca.tlons of Theorem 5 a.nd Theorem 6, we have the followmg results:
CO{LOLLARY ;l. Let C’ be a nopempty convgx subset of E and K bea ‘monempty

sﬁbsetofE* Let 0:C x K - E* and n: CxC—)E befunctxonsandT C —2K
be a mu1t1funct1on Assume that

19 for eacb Ae f(C) and each z € co(A), mm (0(:1: 8), n(:c,y)) 0 for all

g€ T(x)
2% for each A € F(C)-and each y-€ co(A), the set

{x 76‘(':’0(!&) " 'there exists § € T(x) such that (9(1‘{.’9), n(x,y)){()}

S _isclosed in po(A)
o k;3?ﬂfor each A e .F(C) and each :c y E co(A) and for evety net {xq}ae]_“ in

,,,,,,

"aII o e I‘ for quch

i

(B(za; aa n(za,y» @0 for sll o€l

then there exists s* € T(:c") aupb that (Q(z s‘), (:(; y))
49 . there exists a nopempty q}oaed and compact, s'u,‘b‘,set:v,: R of C apd 2€D
o suhthat .

PRI oy

6(z', 8, n(z', 2 ) >0, forall yeC\D a,nd de T(x’)
Then thezre exzsts z e D such that for each y e C there ex1sts 3 e T(:c) such that
L (e, n(E ) <0

- PrOOF: By taking ¢(s, %, ¥) = (8(z, 3), n(z, v)) ‘in‘Th’eor’em, 5, we get the re-

......

compact subset of E“‘ Let 9 : C x K. — E* and'y: C x C — E be functions and
T:C 2K ~be a multifunction such that its graph is cIosed Assume that

. 19 for each A € F(C).and each z €. co(A), mm (Q(x, s) q(a:, y)) < 0 for all
s€T(x); e a2
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fya) 2° fordach A € F(C) and edch 'y € ca(A) (0(3},3), n(r, y)) /8 lower semi-
Cii continuodsin (s;T)E Koxeo(A)]
30 for each A € F(C) and each z*,y € co(A) and for every net {Ib‘a}aer in
C converging to'z* ,if there existd a net:{sq}in K with s, € T(z,) for
all o € T, for which

(G(xa, sa) n(za, )) < O,H for all ‘o e I‘
] vf

a then there exxst;s s* € T(x ) such that (0(:1,- 3*), z ,y))
' there éxists & nonémpfy cIosed and compact subSet' D of (o8 and 2 €D
" ‘such’that’

,»(0:1: s'), (=’ z)>>0 fora]] yEC\D ands ET(z")

_ Then there exists T € D such that for each y € C, there ex18ts 3 T(x) such that
<6€§9~-3)’ " (-’Il, y))é 0.

{PROOF: By taking ¢(s,z,y).= (#(z, ), n(z,y)). in Theorem 6, we get the re-
sult. ‘ 0
COROLLARY 3. Let C be a nonempty convex subset of E and K- be a nonempty
compé,ct subset of E*'Let'd : ¢ K B and n: Cx ¢ = B be"functions and
T:C35% bea mu]fzfunction such that its ‘graph’ is c& 3 Assume that
1°  (§(z,s), n(z,z)) =0 forall € C and s € T(z)
2°  y v (0(z,5), n(x;y)) is quasiconcave for eachﬁ;md z€C and s € T(x);
3% foreach A€ F (C) and each y € co(A) (0 z,3), ,y)} is lower semi-
; ‘contmuous in (s,z) & K X co(A), f
" "4° for each A€ F(C) dnd’ésch z*,y &'co(A) and o & every net {Za}aer in
C converging to z*, if there exists a net {30} in K with's, € T(z,) for
all @€ I', for which, .

(9(:va,sa), n(:cmy)) 0, forall ac r,

then there exists s* € T(z*) suc}l that (9(1: s*), n(z*,y)) <
50 there exists a nonempty closed and compact subset D of C and z€D
such that

(8,8, 1@, 2)) 30, forall yeC\D and &' € T(2).
Theu {there exists T € D such that for. each y € C, there exists 3 € T(7) such that
U (e@E)n(E ) <o

PROOF: In view of assumptions 19 "and 29 it is eady to prove that'the mul-
tifunction GVin the’ ‘proof - af ‘Theorem' 5 i & KKM-map By *b&king 0(s,z,y) =
(6(z,s), n(z,y)) in Corollary 2, we get the result. L 0
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