King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH - 201

Semester 061

Major Examination - I

Solution

Venue: Bldg. 54-Hall		
Time: 10:15 p.m. to 11:45 p.m.		
Date: October 10, 2006		
Max. Marks: 40		
Name:		
ID#:		
"		
S No#.		
S. No#:		
Section#:		

Instructions:

- 1. Clearly indicate the theorem/result while applying it to solve a problem.
- 2. Indicate all calculations in the answer sheet.

Instructor: Dr. Qamrul Hasan Ansari

- 1. (a) Show that if a varies, then the polar equation $r = a \sec \theta \ (\pi/2 < \theta < \pi/2)$ describes a family of lines perpendicular to the polar axis. (3 marks)
 - (b) Identify the polar curve $r = \sec \theta \tan \theta$ by transforming it to rectangular coordinates.

(2 marks)

Solution: (a)

$$r = a \sec \theta \iff r = a \frac{1}{\cos \theta} \iff a = r \cos \theta \iff x = a$$

which represents the family of lines perpendicular to the polar axis (x-axis).

Solution: (b)

$$r = \sec \theta \tan \theta = \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta} \Leftrightarrow r \cos^2 \theta = \sin \theta$$

or $r^2 \cos^2 \theta = r \sin \theta \iff x^2 = y$ since $x = r \cos \theta$ and $y = r \sin \theta$. $y = x^2$ represents the parabola.

2. Sketch the polar curve $r = -5 + 5\sin\theta$ and find its arc length. (5 marks)

OR

Sketch the polar curve $r = \sin 2\theta$ and find the polar equations of the tangent lines to this polar curve at the pole. (5 marks)

Solution: Since $\frac{dr}{d\theta} = 5\cos\theta$,

Arc length
$$= \int_0^{2\pi} \sqrt{(-5+5\sin\theta)^2 + (5\cos\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{50(1-\sin\theta)} d\theta$$
$$= \sqrt{50} \int_0^{2\pi} \sqrt{(1-\sin\theta)} \frac{\sqrt{(1+\sin\theta)}}{\sqrt{(1+\sin\theta)}} d\theta$$
$$= \sqrt{50} \int_0^{2\pi} \frac{\cos\theta}{\sqrt{(1+\sin\theta)}} d\theta = 2\sqrt{50}$$

by using the substitution method.

<u>Solution of OR PART</u>: $r = \sin 2\theta = 0$ when $\theta = 0, \pi/2$. This implies that the curve passes through the origin at $\theta = 0, \pi/2$. $\frac{dr}{d\theta} = 2\cos 2\theta$ and $\frac{dr}{d\theta}|_{\theta=0,\pi/2} \neq 0$, we have that $\theta = 0$ and $\theta = \pi/2$ are the tangent lines to the curve at pole.

3. Sketch the polar curves $r = 1 + \cos \theta$ and $r = 3 \cos \theta$ and find the area of the region inside both the curves. (5 marks)

Solution: To find the points of intersection, we take $1 + \cos \theta = 3 \cos \theta$ which implies that $\cos \theta = 1/2$ and so $\theta = \frac{\pi}{3}, -\frac{\pi}{3}$.

Area =
$$2 \times \frac{1}{2} \int_0^{\pi/3} (1 + \cos \theta)^2 d\theta + 2 \times \frac{1}{2} \int_{\pi/3}^{\pi/2} (3 \cos \theta)^2 d\theta$$

= $2 \left(\frac{\pi}{4} + \frac{9\sqrt{3}}{16} + \frac{3\pi}{8} - \frac{9\sqrt{3}}{16} \right)$
= $\frac{5\pi}{4}$

(Use $\cos^2 \theta = \frac{1+\cos 2\theta}{2}$).

4. A sphere S has center in the first octant and is tangent to each of the three coordinate planes. The distance from the origin to the sphere is $3 - \sqrt{3}$ units. What is the equation of the sphere? (5 marks)

Solution: Let $P(x_0, y_0, z_0)$ and r denote the center and radius of S, respectively. In order for S to be tangent to the xy-plane, the distance $|z_0|$ from $P(x_0, y_0, z_0)$ to the xy-plane must equal r. Since $P(x_0, y_0, z_0)$ is in the first octant, we conclude that $z_0 = |z_0| = r$. Similarly, $x_0 = y_0 = r$ and the center of S is P(r, r, r). The distance from the origin to the center of S is then $\sqrt{r^2 + r^2 + r^2} = \sqrt{3r^2} = \sqrt{3}r$, from which it follows that the distance $3 - \sqrt{3} = \sqrt{3}(\sqrt{3} - 1)$ from the origin to S is given by $\sqrt{3}r - r = (\sqrt{3} - 1)r$. Solving the equation $(\sqrt{3} - 1)r = \sqrt{3}(\sqrt{3} - 1)$ yields the solution $r = \sqrt{3}$. Therefore, the equation of the sphere is

$$(x - \sqrt{3})^2 + (y - \sqrt{3})^2 + (z - \sqrt{3})^2 = 3.$$

5. Use vectors to find the lengths of the diagonals of parallelogram that has $\overrightarrow{i} + \overrightarrow{j}$ and $\overrightarrow{i} - 2\overrightarrow{j}$ as adjacent sides. (5 marks)

Solution: The diagonals are $\overrightarrow{u_1} = \langle 1, 1 \rangle + \langle 1, -2 \rangle = \langle 2, -1 \rangle$ and $\overrightarrow{u_2} = \langle 1, 1 \rangle - \langle 1, -2 \rangle = \langle 0, 3 \rangle$. Therefore, the magnitude of these diagonals are $\|\overrightarrow{u_1}\| = \sqrt{5}$ and $\|\overrightarrow{u_2}\| = 3$.

6. Find two unit vectors in 2-space that make an angle of 45° with $4\overrightarrow{i} + 3\overrightarrow{j}$. (5 marks) Solution: By inspection, $3\overrightarrow{i} - 4\overrightarrow{j}$ is orthogonal to and has the same length as $4\overrightarrow{i} + 3\overrightarrow{j}$ so $\overrightarrow{u_1} = \langle 3, -4 \rangle + \langle 4, 3 \rangle = \langle 7, -1 \rangle$ and $\overrightarrow{u_2} = -\langle 3, -4 \rangle + \langle 4, 3 \rangle = \langle 1, 7 \rangle$ make an angle of 45° with $\langle 4, 3 \rangle$. The unit vectors in the direction of $\overrightarrow{u_1}$ and $\overrightarrow{u_2}$ are $\pm \frac{\langle 7, -1 \rangle}{\sqrt{50}}$.

7. Find two unit vectors that are parallel to the yz-plane and orthogonal to the vector $\overrightarrow{j} + 2\overrightarrow{k}$. (5 marks)

OR

Using a scalar triple product to determine whether the vectors $\overrightarrow{u} = \langle 4, -8, 1 \rangle$, $\overrightarrow{v} = \langle 2, 1, -2 \rangle$ and $\overrightarrow{w} = \langle 3, -4, 12 \rangle$ lie in the same plane. (5 marks)

Solution: A vector parallel to the yz-plane must be perpendicular to \overrightarrow{i} . Therefore $\overrightarrow{i} \times (3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k})$ is perpendicular to both \overrightarrow{i} and $3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$.

$$\overrightarrow{i} \times (3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 0 & 0 \\ 3 & -1 & 2 \end{vmatrix} = -2\overrightarrow{j} - \overrightarrow{k}.$$

$$||\overrightarrow{i} \times (3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k})|| = ||-2\overrightarrow{j} - \overrightarrow{k}|| = \sqrt{5}.$$

The unit vectors are $\pm \frac{2\overrightarrow{j} + \overrightarrow{k}}{\sqrt{5}}$.

Solution of OR PART:

$$\begin{vmatrix} 4 & -8 & 1 \\ 2 & 1 & -2 \\ 3 & -4 & 12 \end{vmatrix} = 4(12 - 8) + 8(24 + 6) - 1(-8 - 3) = 16 + 240 - 11 \neq 0.$$

So the vectors $\overrightarrow{u} = \langle 4, -8, 1 \rangle$, $\overrightarrow{v} = \langle 2, 1, -2 \rangle$ and $\overrightarrow{w} = \langle 3, -4, 12 \rangle$ do not lie in the same plane.

8. Show that the following lines are skew.

$$L_1$$
: $x = 2 + 8t$, $y = 6 - 8t$, $z = 10t$

$$L_2$$
: $x = 3 + 8t$, $y = 5 - 3t$, $z = 6 + t$.

Solution: The vectors $\overrightarrow{v_1} = \langle 8, -8, 10 \rangle$ and $\overrightarrow{v_2} = \langle 8, -3, 1 \rangle$ are parallel to the lines L_1 and L_2 , respectively. Since $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ are not scalar multiple of each other, $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$ are not parallel an so lines L_1 and L_2 are not parallel.

Let us re-write L_1 and L_2 as follows:

$$L_1$$
: $x = 2 + 8t$, $y = 6 - 8t$, $z = 10t$

$$L_2$$
: $x = 3 + 8s$, $y = 5 - 3s$, $z = 6 + s$.

They are intersecting if there exist values of s and t such that

$$2 + 8t = 3 + 8s \tag{1}$$

$$6 - 8t = 5 - 3s \tag{2}$$

$$10t = 6 + s \tag{3}$$

From (1) and (2), we obtain s = 0 and t = 1/8 but these values of s and t does not satisfy (3). Hence L_1 and L_2 are not intersecting. Thus L_1 and L_2 are skew.