# **4.5 Undetermined Coefficients – Annihilator Approach**



#### **Objectives**:

- To learn a method of solving non homogeneous ODEs with constants coefficients using annihilator approach.
- This approach converts right hand side of the ODE to zero (what means by annihilation).
- We then find roots of the resulting ODE by the methods adopted in Section 4.3.

Recall the non-homogeneous linear differential equation with constant coefficients:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f(x)$$
  $a_n \neq 0$  (\*)

where f(x) is a

- polynomial
- or exponential function
- or sine function
- or cosine function
- or a product (&/or sum) of some (or all) of these

#### Key idea of the method

Look at the form of f(x). By using a linear differentiable operator, we make the left hand side of (\*) zero.

**Annihilator Operator**: A linear differentiable operator L with constants is called annihilator if L(f(x)) = 0.

#### Operators annihilating polynomial functions

| Function         | Construction of Operator Annihilating the function                     | Annihilator |
|------------------|------------------------------------------------------------------------|-------------|
| $\alpha$         | $D(\alpha) = 0$                                                        | D           |
| х                | $D(x) = 1 \Rightarrow D(D(x)) = D(1) = 0$                              | $D^2$       |
| 1 .              | $D(1+x) = 1 \Rightarrow D(D(x+1)) = D(1) = 0$                          | $D^2$       |
| 1+ <i>x</i>      | $\Rightarrow D^2(1+x)=0$                                               |             |
| 2                | $D(1+x+x^2) = 1+2x \Rightarrow D(D(1+x+x^2)) = D(1+2x) = 2$            | $D^3$       |
| $1+x+x^2$        | $\Rightarrow D(D(D(1+x+x^2))) = D(2) = 0 \Rightarrow D^3(1+x+x^2) = 0$ |             |
| $1+x+\cdots+x^n$ | $D^{n+1}(1+x + \dots + x^{n}) = 0$                                     | $D^{n+1}$   |

A polynomial of degree n is annihilated by the derivative operator of order n+1 given by  $D^{n+1}$ 

# Operators annihilating exponential functions

| Function | Construction of Operator Annihilating the function                                  | Annihilator |
|----------|-------------------------------------------------------------------------------------|-------------|
| $e^{x}$  | $De^x = e^x \Rightarrow De^x - e^x = 0 \Rightarrow (D - 1)e^x = 0$                  | <i>D</i> −1 |
| $e^{2x}$ | $De^{2x} = 2e^{2x} \Rightarrow De^{2x} - 2e^{2x} = 0 \Rightarrow (D-2)e^{2x} = 0$   | D-2         |
| $2^{3x}$ | $De^{3x} = 3e^{3x} \Rightarrow De^{3x} - 3e^{3x} = 0 \Rightarrow (D - 3)e^{3x} = 0$ | D - 3       |
| $e^{nx}$ | $De^{nx} = ne^{nx} \Rightarrow De^{nx} - ne^{nx} = 0 \Rightarrow (D - n)e^{nx} = 0$ | D-n         |

An exponential  $e^{nx}$  is annihilated by the derivative operator D-n

## Operators annihilating $\cos nx / \sin nx$ functions

| Function  | Construction of Operator Annihilating the function                                                                                       | Annihilator |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $\cos x$  | $D\cos x = -\sin x \Rightarrow D(D\cos x) = -\cos x$ $\Rightarrow D^{2}\cos x + \cos x = 0 \Rightarrow (D^{2} + 1)\cos x = 0$            | $D^2 + 1$   |
| $\cos 2x$ | $D\cos 2x = -2\sin x \Rightarrow D(D\cos 2x) = -4\cos 2x$ $\Rightarrow D^{2}\cos 2x + 4\cos 2x = 0 \Rightarrow (D^{2} + 4)\cos x = 0$    | $D^2 + 4$   |
| cosnx     | $D\cos nx = -n\sin x \Rightarrow D(D\cos nx) = -n^2\cos nx$ $\Rightarrow D^2\cos nx + n^2\cos nx = 0 \Rightarrow (D^2 + n^2)\cos nx = 0$ | $D^2 + n^2$ |

 $\cos nx / \sin nx$  is annihilated by the derivative operator  $D^2 + n^2$ 

# Operators annihilating mixed exponential & polynomial

### functions

| Function           | Construction of Operator Annihilating the function                                                                                                                                                                                                                                                                      | Annihilator        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| xe <sup>ax</sup>   | $D(xe^{\alpha x}) = e^{\alpha x} + \alpha x e^{\alpha x} \Rightarrow D(xe^{\alpha x}) - \alpha x e^{\alpha x} = e^{\alpha x}$ $(D - \alpha)xe^{\alpha x} = e^{\alpha x}$ $Note  (D - \alpha)e^{\alpha x} = 0$ $\therefore (D - \alpha)^2 x e^{\alpha x} = 0$                                                            | $(D-\alpha)^2$     |
| $x^2e^{\alpha x}$  | $D(x^{2}e^{\alpha x}) = 2xe^{\alpha x} + \alpha x^{2}e^{\alpha x} \Rightarrow D(x^{2}e^{\alpha x}) - \alpha x^{2}e^{\alpha x} = 2xe^{\alpha x}$ $(D - \alpha)x^{2}e^{\alpha x} = 2xe^{\alpha x}$ $Note  (D - \alpha)^{2}xe^{\alpha x} = 0$ $\therefore (D - \alpha)^{3}x^{2}e^{\alpha x} = 0$                           | $(D-\alpha)^3$     |
| $x^3e^{\alpha x}$  | $D(x^{3}e^{\alpha x}) = 3xe^{\alpha x} + \alpha x^{3}e^{\alpha x} \Rightarrow D(x^{3}e^{\alpha x}) - \alpha x^{3}e^{\alpha x} = 3x^{2}e^{\alpha x}$ $(D - \alpha)x^{3}e^{\alpha x} = 3x^{2}e^{\alpha x}$ $Note  (D - \alpha)^{3}x^{2}e^{\alpha x} = 0$ $\therefore (D - \alpha)^{4}x^{3}e^{\alpha x} = 0$               | $(D-\alpha)^4$     |
| $x^n e^{\alpha x}$ | $D(x^{n}e^{\alpha x}) = nx^{n-1}e^{\alpha x} + \alpha x^{n}e^{\alpha x} \Rightarrow D(x^{n}e^{\alpha x}) - \alpha x^{n}e^{\alpha x} = nx^{n-1}e^{\alpha x}$ $(D - \alpha)x^{n}e^{\alpha x} = nx^{n-1}e^{\alpha x}$ $Note  (D - \alpha)^{n}x^{n-1}e^{\alpha x} = 0$ $\therefore (D - \alpha)^{n+1}x^{n}e^{\alpha x} = 0$ | $(D-\alpha)^{n+1}$ |

A mixed exponential and polynomial  $x^n e^{\alpha x}$  is annihilated by the derivative operator  $(D-\alpha)^{n+1}$ 

# Operators annihilating mixed exponential, polynomial & trigonometric functions

| Function                        | Construction of Operator Annihilating the function                                                          | Annihilator                        |
|---------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------|
| $e^{ax}\cos \beta x$            | $D(e^{\alpha x}\cos\beta x) = \alpha e^{\alpha x}\cos\beta x - \beta e^{\alpha x}\sin\beta x$               |                                    |
|                                 | $D^{2}(e^{\alpha x}\cos\beta x) = \alpha^{2}e^{\alpha x}\cos\beta x - 2\alpha\beta e^{\alpha x}\sin\beta x$ |                                    |
|                                 | $-\beta^2 e^{\alpha x} \cos \beta x$                                                                        | $D^2-2\alpha D$                    |
|                                 | $(D^{2} - 2\alpha D)(e^{\alpha x}\cos\beta x) = -2\alpha\beta e^{\alpha x}\sin\beta x$                      | $+\alpha^2+\beta^2$                |
|                                 | $-\beta^2 e^{\alpha x} \cos \beta x$                                                                        |                                    |
|                                 | $(D^2 - 2\alpha D + \alpha^2 + \beta^2)(e^{\alpha x}\cos\beta x) = 0$                                       |                                    |
| $xe^{\alpha x}\cos\beta x$      |                                                                                                             | $[D^2-2\alpha D$                   |
|                                 | $(D^2 - 2\alpha D + \alpha^2 + \beta^2)^2 (xe^{\alpha x} \cos \beta x) = 0$                                 | $+\alpha^2+\beta^2]^2$             |
| $x^2 e^{\alpha x} \cos \beta x$ |                                                                                                             | $[D^2-2\alpha D$                   |
|                                 | $(D^2 - 2\alpha D + \alpha^2 + \beta^2)^3 (xe^{\alpha x} \cos \beta x) = 0$                                 | $+\alpha^2+\beta^2$ ] <sup>3</sup> |
| $n = \alpha x$                  | 2 -2 -1                                                                                                     | $[D^2-2\alpha D]$                  |
| $x e^{-c} \cos \beta x$         | $(D^{2} - 2\alpha D + \alpha^{2} + \beta^{2})^{n+1} (xe^{\alpha x} \cos \beta x) = 0$                       | $+\alpha^2+\beta^2]^{n+1}$         |

A mixed exponential, polynomial and trigonometric function  $x^n e^{\alpha x} \cos \beta x$  is annihilated by  $[D^2 - 2\alpha D + \alpha^2 + \beta^2]^{n+1}$ .

Similarly, a mixed exponential, polynomial and trigonometric function  $x^n e^{\alpha x} \sin \beta x$  is annihilated by  $[D^2 - 2\alpha D + \alpha^2 + \beta^2]^{n+1}$ .

#### **Summary of Annihilators**

Polynomial of degree n annihilated by  $D^{n+1}$ 

An exponential  $e^{nx}$  is annihilated by the derivative operator D-n

An exponential  $e^{nx}$  is annihilated by the derivative operator D-n

 $\cos nx / \sin nx$  is annihilated by the derivative operator  $D^2 + n^2$ 

A mixed exponential and polynomial  $x^n e^{\alpha x}$  is annihilated by the derivative operator  $(D - \alpha)^{n+1}$ 

A mixed exponential, polynomial and trigonometric function  $x^n e^{\alpha x} \cos \beta x$  is annihilated by  $[D^2 - 2\alpha D + \alpha^2 + \beta^2]^{n+1}$ .

A mixed exponential, polynomial and trigonometric function  $x^n e^{\alpha x} \sin \beta x$  is annihilated by  $[D^2 - 2\alpha D + \alpha^2 + \beta^2]^{n+1}$ .

**Question 6/166**: Write  $y''' + 4y' = e^x \cos 2x$  in operator form the annihilated ODE.

**Question 7/166**: Write  $y''' + 2y'' - 13y' + 10y = xe^{-x}$  in operator form the annihilated ODE.

Question 14/166: Verify that  $D^2 + 64$  annihilates  $y = 2\cos 8x - 5\sin 8x$ .

Question 25/167: Find a linear differential operator that annihilates  $3 + e^x \cos 2x$ .

Question 27/167: Find linearly independent functions that are annihilated by  $D^5$ .

Question 33/167: Find linearly independent functions that are annihilated by  $D^3 - 10D^2 + 25D$ .

**Question 39/167**: Solve y'' + 4y' + 4y = 2x + 6.

**Question 56/167**: Solve  $y'' + y = 4\cos x - \sin x$ .

Question 60/167: Solve the IVP  $y'' - 2y' + 5y = e^x \sin x$  such that y(0) = 1, y'(0) = 2.