10.2 Calculus with Parametric Curves

Tangent Lines to Parametric Curves

Consider the parametric equations of a curve

$$x = f(t), y = g(t);$$
 $a \le t \le b$

• $\frac{dy}{dx}$ is defined as

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ provided } \frac{dx}{dt} \neq 0$$

• Similarly

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}}$$

* slope of tangent line at $x = f(t_0)$, $y = g(t_0)$

$$\frac{dy}{dx}\bigg|_{t=t_0}$$

* Tangent is horizontal when

$$\frac{dy}{dt} = 0$$
 and $\frac{dx}{dt} \neq 0$

* Tangent is vertical when

$$\frac{dx}{dt} = 0$$
 and $\frac{dy}{dt} \neq 0$

- * Points where $\frac{dy}{dt} = 0$ and $\frac{dx}{dt} = 0$ are called singular points
- ***** The curve is concave upward when $\frac{d^2y}{dx^2} \ge 0$ and concave

downward when
$$\frac{d^2y}{dx^2} \le 0$$
.

Question 6/666: Find an equation of the tangent to the curve $x = \cos \theta + \sin 2\theta$, $y = \sin \theta + \cos 2\theta$ at $\theta = 0$.

Question 7/666: Find an equation of the tangent to the curve $x = e^t$, $y = (t - 1)^2$ at (1,1) (a) without eliminating the parameter. (b) by first eliminating the parameter.

Question 15/666: If $x = 2\sin t$, $y = 3\cos t$, $0 < t < 2\pi$. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. For which values of t is the curve concave upward?

Question 20/666: Find the points on the curve $x = \cos 3\theta$, $y = 2\sin \theta$ where the tangent is horizontal or vertical.

Question 29/667: At what points on the curve $x = t^3 + 4t$, $y = 6t^2$ is the tangent parallel to the line with equation x = -7t, y = 12t - 5?

Area Formula for Parametric Curves

The area A of the region R enclosed by the parametric curve x = f(t), y = g(t) as t increases from α to β is

$$A = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

or $A = \int_{\beta}^{\alpha} g(t)f'(t)dt$ if $(f(\beta), g(\beta))$ is the leftmost endpoint

Question 34/667: Find the area of the region enclosed by the asteroid $x = a\cos^3\theta$, $y = a\sin^3\theta$.

Arc Length Formula for Parametric Curves

Given a parametric curve x = f(t), y = g(t), as t increases from α to β or $(\alpha \le t \le \beta)$.

The arc length of the curve from $t = \alpha$ to $t = \beta$ is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Question 42/667: Find the length of the curve $x = a(\cos\theta + \theta\sin\theta), \ y = a(\sin\theta - \theta\cos\theta), \ (0 \le \theta \le \pi).$

Surface area Generated by Revolving the Curve

Given parametric equations of a curve

$$x = f(t), \quad y = g(t) \quad (\alpha \le t \le \beta)$$

then the area of the surface generated by revolving this curve about X -axis is

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

and the area of the surface generated by revolving this curve about Y -axis is

$$S = \int_{\alpha}^{\beta} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

We assume that curve is traced only once and f'(t) and g'(t) are

Question 61/668: Find the area of the surface generated by revolving the curve

$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$ $(0 \le \theta \le \pi/2)$

about X -axis.