10.1 Curves Defined by Parametric Equations

Parametric Equations & Parametric Curves

- **Parametric Equations:** If x and y are both functions of a third variable t, that is,
 \[x = f(t) \quad y = g(t), \]

 Then these equations are called *parametric equations* and the third variable t is called *parameter*.
- Each value of t determines a point (x, y), which we can plot in a coordinate plane.
- As t varies, the point $(x, y) = (f(t), g(t))$ varies and traces out a curve, called *parametric curve*.
- The curve with parametric equations
 \[x = f(t) \quad y = g(t), \quad a \leq t \leq b \]
 has initial point $(f(a), g(a))$ and the terminal point $(f(b), g(b))$.
- A curve may have more than one set of parametric equations, for example,
 \[x = \cos t, \quad y = \sin t \quad \text{and} \quad x = \sin 2t, \quad y = \cos 2t \]
 represent circle with center at origin and radius one.
- The graph of the parametric curve can be determined by plotting (x, y) corresponding to parameter t.
- We can always convert the parametric equations in the Cartesian equation.
- We can convert the Cartesian equation $y = f(x)$ in the parametric equations by taking $x = t$ and $y = f(t)$.
Question 10/656: Sketch the curve by using the parametric equations
\[x = t^2, \quad y = t^3 \] to plot points. Also, estimate the parameter to find a Cartesian equation of the curve.

Question 13/656: Estimate the parameter to find a Cartesian equation of the curve \[x = \sin^2 \theta, \quad y = \cos^2 \theta. \] Also, sketch the curve.

Question 36/658: Find three different sets of parametric equations to represent the curve \[y = x^3, \quad x \in \mathbb{R}. \]