14.3 Partial derivatives

Notation

Consider z = f(x, y).

• The partial derivatives w.r.t. 'x' and 'y' are denoted respectively by

$$f_x, \frac{\partial f}{\partial x}, \frac{\partial z}{\partial x}$$
 and $f_y, \frac{\partial f}{\partial y}, \frac{\partial z}{\partial y}$

• The partial derivatives at the point (x_0, y_0) are

$$f_x(x_0, y_0), \left. \frac{\partial f}{\partial x} \right|_{x=x_0, y=y_0}, \left. \frac{\partial z}{\partial x} \right|_{(x_0, y_0)} \text{ and } f_y(x_0, y_0), \left. \frac{\partial f}{\partial y} \right|_{x=x_0, y=y_0}, \left. \frac{\partial z}{\partial y} \right|_{(x_0, y_0)}$$

Question 17/921: Let
$$f(x, y) = \frac{x - y}{x + y}$$
. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

Question 31/921: Find the partial derivatives of the function

$$f(x, y, z, t) = xyz^{2} \tan(yt).$$

Question 33/921: Consider $u = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$. Find $\frac{\partial u}{\partial x_i}$.

Implicit partial differentiation

• Learn through an example

Question 44/921: If $\sin(xyz) = x + 2y + 3z$ then calculate $\partial z / \partial x$ and $\partial z / \partial y$.

Question 9/920: If $f(x, y) = 16 - 4x^2 - y^2$, find $f_x(1, 2)$ and $f_y(1, 2)$ and interpret these numbers as slope.

Higher order partial derivatives

• Since $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ are also functions of *x* & *y*, so we can differentiate them

further

open disk, then $f_{xy} = f_{yx}$ on that disk.

• For z=f(x,y), the four second order partial derivatives are

•
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = f_{xx}$$

• $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{xy}$
• $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{yx}$
• $\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$
Called mixed
partial derivatives
• $\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$
If the function 'f' is nice
then the order in mixed
derivatives is not
important, i.e. $f_{xy} = f_{yx}$

Partial derivatives of functions of more than two variables

- Until now we have only studied partial derivatives of functions of two variables.
- But the concept & computations of partial derivatives of functions of more than two variables are similar. [See example below]

Question 51/921: Find all the second partial derivates of $u = e^{-s} \sin t$.

Question 56/921: Let $u = xye^{y}$. Verify that the conculsion of Clairaut's Theorem holds

Question 58/921: Let $f(x, y) = x^2 e^{-ct}$. Find f_{ttt} and f_{txx} .

Question 61/921: Let $u = e^{r\theta} \sin \theta$. Find $\frac{\partial^3 u}{\partial r^2 \partial \theta}$

Partial differential equations

Equations involving partial derivatives

Some important examples of partial differential equations are

Question 68(e)/921: Determine whether the function

 $u = \sin x \cosh y + \cos y \sinh y$ satisfies Laplace's equation.