12.5 Equations of Lines and Planes

Parametric Form of Equation of a Line

We define the vectors \overrightarrow{r} , $\overrightarrow{r_0}$ and \overrightarrow{v} as

$$\overrightarrow{r} = \langle x, y \rangle, \qquad \overrightarrow{r_0} = \langle x_0, y_0 \rangle \qquad \overrightarrow{v} = \langle a, b \rangle \qquad [2-space]$$

$$\overrightarrow{r} = \langle x, y, z \rangle, \qquad \overrightarrow{r_0} = \langle x_0, y_0, z_0 \rangle \qquad \overrightarrow{v} = \langle a, b, c \rangle \qquad [3-space]$$

Then we have <u>vector equation of a line</u> in 2-space or 3-space $\overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{v}$.

Therefore, a line can be written as

$$\langle x, y \rangle = \langle x_0 + at, y_0 + bt \rangle$$

 $\langle x, y, z \rangle = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle$

or, equivalently, as

$$\langle x, y \rangle = \langle x_0, y_0 \rangle + t \langle a, b \rangle$$

 $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$

or

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

Similar definition in 2-space

Parametric Form

The parametric equation of a line 'L' passing through the point

 $P_0(x_0, y_0, z_0)$ and parallel to the vector $\vec{v} = \langle a, b, c \rangle$ is given by

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

Different
values of
parameter
't' give
different
points on
the line.

To determine parametric equations of a line, we need

- * a point on the line
- * a vector parallel to the line

If $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$ are parametric equations of a line, then $\overrightarrow{v} = \langle a, b, c \rangle$ is a vector parallel to the given line and the given line passes through the point (x_0, y_0, z_0) .

Symmetric form of equation of a line

Similar definition in 2-space

Symmetric form

The symmetric form of the equation of a line 'L' passing

through $P_0(x_0, y_0, z_0)$ and parallel to vector $\vec{v} = \langle a, b, c \rangle$ is

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Question 10/830: Find the parametric and symmetric equations for the line through (2, 1, 0) and perpendicular to both $\vec{i} + \vec{j}$ and $\vec{j} + \vec{k}$.

Question 18/830: Find the parametric for the line segment from (10, 3, 1) to (5, 6, -3).

Different types of lines

The lines L_1 , L_2 are called

- parallel if their corresponding vectors $\vec{v_1}$, $\vec{v_2}$ are parallel i.e. multiple of each other $(\vec{v_1} = k\vec{v_2} \text{ or } \vec{v_2} = k\vec{v_1} \text{ or } \vec{v_1} \times \vec{v_2} = \vec{0})$
- perpendicular if their corresponding vectors $\vec{v_1}$, $\vec{v_2}$ are orthogonal i.e. $\vec{v_1} \cdot \vec{v_2} = 0$
- intersecting if these intersect at a point
- skew if these are neither parallel nor intersecting (therefore do not lie in same plane)

Question 21/830: Determine whether the line L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the point of intersection:

$$L_1: \frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$$

$$L_2: \frac{x-3}{-4} = \frac{y-2}{-3} = \frac{z-1}{2}$$

Equation of a plane

A vector perpendicular to a plane is called a *normal* to the plane

To determine a plane we require

- * a point on the plane
- * a vector normal to the plane

The equation of a plane passing through $P_0(x_0, y_0, z_0)$ and having the

 $\overrightarrow{n} \cdot (\overrightarrow{r} - \overrightarrow{r_0}) = 0$, where $\overrightarrow{r_0} = \langle x_0, y_0, z_0 \rangle$ and $\overrightarrow{r} = \langle x, y, z \rangle$

normal vector $\vec{v} = \langle a, b, c \rangle$ is

or
$$\langle a,b,c \rangle \cdot \langle x-x_0, y-y_0, z-z_0 \rangle = 0$$

Vector form

Question 26/830: Find the equation of a plane through the point (-2, 8, 10) and perpendicular to the line x = 1 + t, y = 2t, z = 4 - 3t.

Parallel or Perpendicular Planes

Two planes are

- parallel if their normals are parallel
- perpendicular if their normals are orthogonal

Exercise: Determine whether the planes are parallel, perpendicular, or neither:

$$P_1: 2x-8y-6z=3$$

(b)
$$P_1: 3x-2y+z=1$$

 $P_2: 4x+5y-2z=4$

(a)
$$P_1$$
: $2x-8y-6z=3$
 P_2 : $-x+4y+3z=5$

If \vec{v} is vector parallel to the line \vec{L} and \vec{n} is normal to the plane \vec{P} . Then line \boldsymbol{L} and plane \boldsymbol{P} are

- parallel if \overrightarrow{v} and \overrightarrow{n} are orthogonal
- perpendicular if \overrightarrow{v} and \overrightarrow{n} are parallel

Line of intersection of two planes

Can you see how two planes intersect in a line

If P_1 , P_2 are two intersecting planes with normals \vec{n}_1 , \vec{n}_2 then $\vec{n}_1 \times \vec{n}_2$ is parallel to the line of intersection of P_1 , P_2 .

Question 37/830: Find the equation of a plane passes through the point (-1, 2, 1) and contains the line of intersection of the planes x + y - z = 2 and 2x - y + 3z = 1.

Angle between two intersecting planes

The acute angle θ between planes P_1 , P_2 is given by

$$\cos\theta = \frac{\left|\vec{n}_1 \cdot \vec{n}_2\right|}{\left\|\vec{n}_1\right\| \left\|\vec{n}_2\right\|}$$

where \vec{n}_1 , \vec{n}_2 are normals to planes P_1 , P_2 .

See class explanation

Question 52/831: (a) Find the symmetric equations for the line of intersection of the planes and (b) find the angle between the planes

$$P_1: x - 2y + z = 1$$
 and $P_2: 2x + y + z = 1$.

Distance between a point and a plane

The distance between a point $P_0(x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is given by

$$D = \frac{\left| ax_0 + by_0 + cz_0 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

The distance D between parallel planes $ax + by + cz + d_1 = 0$ and

$$ax + by + cz + d_2 = 0$$
 is $D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$

Distance between two skew lines

- Two skew lines L_1, L_2 can be viewed as lying in two parallel planes P_1, P_2
- So the question of finding distance between L_1 and L_2 is equivalent to finding distance between parallel planes P_1 and P_2

What to do

- Find parallel planes P_1, P_2 containing skew lines L_1, L_2
- Find distance between parallel planes P_1, P_2 using above idea.

Question 43/830: Find the direction numbers for the line of intersection of the planes

$$P_1 : x + y + z = 1$$

$$P_2 : x + z = 0$$

Question 48/831: Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them

$$P_1$$
: $2x - 3y + 4z = 5$

$$P_2$$
: $x + 6y + 4z = 3$