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Chapter 1

Metric Spaces

1.1 Definition and Examples of Metric Spaces

Definition 1.1. Let X be a nonempty set. A real-valued function d defined

on X ×X is said to be a metric on X if it satisfies the following conditions:

(M1) d(x, y) = 0 if and only if x = y,

(M2) d(x, y) = d(y, x) for all x, y ∈ X, and (symmetry)

(M3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. (triangle inequality)

The set X together with a given metric d on X is called a metric space and

is denoted by (X, d). If there is no confusion likely to occur we, sometimes,

denote the metric space (X, d) by X .

The triangle inequality may be inter-

preted as that “the length of one side

of a triangle can not exceed the sum

of the length of the other two sides”.

Equivalently, the distance from x to y

via any intermediate point z can not be

shorter than the direct distance from x

to y.

d(
x,

z)

d(z, y)

d(x, y)
x

z

y

The metric d has the following properties:

1. For all x, z ∈ X, d(x, z) is always nonnegative:

If we put y = x in the triangle inequality (M3), we get

d(x, x) ≤ d(x, z) + d(z, x).

By using (M1) and (M2), we obtain

2d(x, z) ≥ 0 and hence d(x, z) ≥ 0.

1
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2. Since the distances are generally greater going via an additional

point, then they are greater going via any number of additional points

z1, z2, . . . , zn; from the triangle inequality (M3), it follows by induction

that for any x, y, z1, z2, . . . , zn ∈ X ,

d(x, y) ≤ d(x, z1) + d(z1, y)

≤ d(x, z1) + d(z1, z2) + d(z2, y)

≤ d(x, z1) + d(z1, z2) + d(z2, z3) + d(z3, y)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ d(x, z1) + d(z1, z2) + · · · + d(zn, y).

3. For any x, y, z ∈ X, we have

|d(x, z) − d(y, z)| ≤ d(x, y).

For it follows from (M2) and (M3) that

d(x, z) ≤ d(x, y) + d(y, z)

and

d(y, z) ≤ d(y, x) + d(x, z) = d(x, y) + d(x, z).

Thus

−d(x, y) ≤ d(x, z) − d(y, z) ≤ d(x, y).

Problem 1.1. If x1, x2, y1, y2 ∈ X, then prove that

|d(x1, y1) − d(x2,y2)| ≤ d(x1,x2) + d(y1, y2).

Examples of Metric Spaces

Example 1.1. Let X = R, the set of all real numbers. For x, y ∈ X , define

d(x, y) = |x − y|.
Then (X, d) is a metric space and the metric d is called the usual metric

on R.

Verification. For all x, y, z ∈ X, we have

(M1) d(x, y) = |x − y| = 0 if and only if x = y;

(M2) d(x, y) = |x − y| = | − (x − y)| = |y − x| = d(y, x);

(M3) d(x, y) = |x − y| = |(x − z) + (z − y)|
≤ |x − z|+ |z − y|
= d(x, z) + d(z, y).
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In the verification of (M3) in Example 1.1, we used the fact that |a+b| ≤
|a| + |b| for real numbers a and b. This property is also true for complex

numbers a and b. Hence, we have the following example:

Example 1.2. Let X = C, the set of all complex numbers. For x, y ∈ X ,

define

d (x, y) = |x − y| .
Then (X, d) is a metric space and the metric d is called the usual metric

on C.

Example 1.3. Let X be any nonempty set. For x, y ∈ X, define

d (x, y) =

{
0, if x = y

1, if x 6= y.

Then (X, d) is a metric space. The metric d is called discrete metric and

the space (X, d) is called discrete metric space.

Remark 1.1. It shows that on each nonempty set, we can always define

at least one metric, called discrete metric.

Example 1.4. Let X = R2, the set of all points in the coordinate plane.

For x = (x1, x2), y = (y1, y2) in X define

d (x, y) =

√

(x1 − y1)
2

+ (x2 − y2)
2
.

Then (X, d) is a metric space and d (x, y) is the natural distance between

two points in a plane.

Verification. For any x = (x1, x2), y = (y1, y2) and z = (z1, z2) in X .

(M1) d(x, y) = 0 ⇔
√

(x1 − y1)
2 + (x2 − y2)

2 = 0

⇔ (x1 − y1)
2

= 0 and (x2 − y2)
2

= 0

⇔ x1 = y1 and x2 = y2

⇔ x = y.

(M2) d(x, y) =

√

(x1 − y1)
2

+ (x2 − y2)
2

=

√

(y1 − x1)
2

+ (y2 − x2)
2

= d (x, y) .
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(M3) [d(x, y)]
2

= (x1 − y1)
2

+ (x2 − y2)
2

= [(x1 − z1) + (z1 − y1)]
2

+ [(x2 − z2) + (z2 − y2)]
2

= (x1 − z1)
2

+ (z1 − y1)
2

+2



(x1 − z1
︸ ︷︷ ︸

a

)(z1 − y1
︸ ︷︷ ︸

b

) + (x2 − z2
︸ ︷︷ ︸

)

c

(z2 − y2
︸ ︷︷ ︸

)

d





+ (x2 − z2)
2 + (z2−y2)

2

Taking x1−z1 = a, z1−y1 = b, x2−z2 =

c and z2 − y2 = d, and since

(ab + cd)
2 ≤ (a2 + c2)(b2 + d2),

we have

R

R

(x
1 , x

2 )

(y1, y2)

d(
x,

y)

x1 − y1

x2 − y2

[d (x, y)]
2 ≤ (x1 − z1)

2 + (x2 − z2)
2

+2
√

(x1 − z1)2 + (x2 − z2)2
√

(z1 − y1)2 + (z2 − y2)2

+(z1 − y1)
2 + (z2 − y2)

2

= [d (x, z)]2 + 2d (x, z) d (z, y) + [d (z, y)]2

= [d (x, z) + d (z, y)]2 .

Therefore,

d (x, y) ≤ d (x, z) + d (z, y) .

Example 1.5. Let X = R2. For x = (x1, x2), y = (y1, y2) in X , define

d (x, y) = |x1 − y1| + |x2 − y2| .

Then (X, d) is a metric space.
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Verification. The conditions (M1)

and (M2) are obvious. We prove only

condition (M3). For x = (x1, x2), y =

(y1, y2) and z = (z1, z2) in X ,

d (x, y) = |x1 − y1| + |x2 − y2|
≤ |x1 − z1| + |z1 − y1|

+ |x2 − z2| + |z2 − y2|
= d(x, z) + d(z, y).

R

R

(x
1
, x

2
)

(y1, y2)

|x1 − y1|

|x2 − y2|

Example 1.6. Let X = R2. For x =

(x1, x2), y = (y1, y2) in X , define

d (x, y) = max {|x1 − y1| , |x2 − y2|} .

Then (X, d) is a metric space.

Remark 1.2. Examples 1.4, 1.5 and

1.6 show that more than one metric can

always be defined on a nonempty set.

R

R

(x
1
, x

2
)

(y1, y2)

|x1 − y1|

|x2 − y2|

Problem 1.2. Let X = R2 and x = (0, 2), y = (3, 6) in X. Find the

distance between x and y by using the metrics of Examples 1.4, 1.5 and

1.6.

Example 1.7. Let X = Rn, the set of all ordered n-tuples of real numbers.

For x = (x1, x2, . . . , xn) ∈ X and y = (y1, y2, . . . , yn) ∈ X , we define

(a) d1 (x, y) =

n∑

i=1

|xi − yi| (called usual metric)

(b) dp (x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

, p ≥ 1 (called taxicab metric)

(c) d∞ (x, y) = max
1≤i≤n

{|xi − yi|}. (called max metric)

Verification. In view of Examples 1.4, 1.5 and 1.6, it is easy to verify

that d1, dp and d∞ are metrics on X .

The triangular inequality (M3) in the case of dp requires the use of
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Minkowski inequality1

dp (x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

=

(
n∑

i=1

|xi − zi + zi + yi|p
) 1

p

≤
(

n∑

i=1

|xi − zi| + |zi − yi|p
) 1

p

≤
(

n∑

i=1

|xi − zi|p
) 1

p

+

(
n∑

i=1

|zi − yi|p
) 1

p

= dp (x, z) + d(x, y).

Remark 1.3. Let X = Cn, the set of all n-tuples of complex numbers. We

can define the metrics d1, dp and d∞ on X in the same way as in Example

1.7.

Example 1.8. Let `∞ be the space of all bounded sequences of real or

complex numbers, that is,

`∞ =

{

{xn} ⊆ R or C : sup
1≤n<∞

|xn| < ∞
}

.

For x = {xn} ∈ `∞ and y = {yn} ∈ `∞, define

d∞ (x, y) = sup
1≤n<∞

|xn − yn| .

Then it is easy to verify that d∞ is a metric on `∞ and (d∞, `∞) is a metric

space.

Example 1.9. Let s be the space of all sequences of real or complex num-

bers, that is,

s = {{xn} ⊆ R or C} .

1Minkowski Inequality: Let 1 ≤ p < ∞. If xi, yi ∈ K (R or C) (i = 1, 2, · · · , n),

then

(
n∑

i=1

|xi + yi|
p

) 1
p

≤

(
n∑

i=1

|xi|
p

) 1
p

+

(
n∑

i=1

|yi|
p

) 1
p

.

Let 0 < p ≤ 1. If xi, yi ∈ K (R or C) (i = 1, 2, · · · , n), then

n∑

i=1

|xi + yi|
p ≤

n∑

i=1

|xi|
p +

n∑

i=1

|yi|
p .
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For x = {xn} and y = {yn} in s, define

d (x, y) =

∞∑

i=1

1

2i

|xi − yi|
1 + |xi − yi|

.

Then (s, d) is a metric space.

Verification. The series

∞∑

i=1

1

2i

|xi − yi|
1 + |xi − yi|

is convergent since its ith

term is less than 1
2i . The conditions (M1) and (M2) can be easily verified.

Let x = {xi}, y = {yi} and z = {zi} in s. Then by triangular inequality,

we have

|xi − yi| ≤ |xi − zi| + |zi − yi|
and hence2

|xi − yi|
1 + |xi − yi|

≤ |xi − zi| + |zi − yi|
1 + |xi − yi| + |zi − yi|

=
|xi − zi|

1 + |xi − zi| + |zi − yi|
+

|zi − yi|
1 + |xi − zi| + |zi − yi|

≤ |xi − zi|
1 + |xi − zi|

+
|zi − yi|

1 + |zi − yi|
.

Multiplying both sides by 1
2i and summing with respect to i, we obtain

d (x, y) ≤ d (x, z) + d (z, y) .

Problem 1.3. Let c be the space of all convergent sequences of real or

complex numbers. For x = {xn} and y = {yn} in c, define

d (x, y) = sup
1≤i<∞

|xi − yi| .

Then prove that d is a metric on c and (c, d) is a metric space.

Example 1.10. Let 1 ≤ p < ∞. Consider the space `p of all sequences

{xn} of real or complex numbers such that

∞∑

n=1

|xn|p < ∞. Let x = {xn}

and y = {yn} ∈ `p, we define

d (x, y) =

(
∞∑

n=1

|xn − yn|p
) 1

p

.

Then, (`p, d) is a metric space.
2Let 0 ≤ α ≤ β. Then α + αβ ≤ β + αβ. Dividing both sides by (1 + α) (1 + β), we

have
α

1 + α
≤

β

1 + β
.
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Verification. The conditions (M1) and (M2) can be easily verified. Let

x = {xn}, y = {yn} and z = {zn} be sequences in `p. Then

d (x, y) =

(
∞∑

n=1

|xn − yn|p
) 1

p

=

(
∞∑

n=1

|xn − zn + zn − yn|p
) 1

p

≤
(

∞∑

n=1

|xn − zn|p
) 1

p

+

(
∞∑

n=1

|zn − yn|p
) 1

p

(by Minkowski’s inequality)

= d(x, z) + d(z, y).

Example 1.11. Let B[a, b] be the space of all bounded real-valued

functions defined on [a, b], that is, B[a, b] = {f : [a, b] → R : f(t) ≤ k

for all t ∈ [a, b]}. For f, g ∈ B[a, b], we define

d (f, g) = sup
t∈[a,b]

|f(t) − g(t)| .

Then (B[a, b], d) is a metric space.

Example 1.12. Let C[a, b] be the space of all continuous real-valued func-

tions defined on [a, b]. For f, g ∈ C[a, b], we define the following metrics on

C[a, b]:

d∞ (f, g) = max
t∈[a,b]

|f (t) − g(t)|

and

d1 (x, y) =

∫ b

a

|f(t) − g(t)| dt,

where the integral is the Riemann integral which is possible because the

functions f and g are continuous on [a, b]. Then d∞ and d1 are metrics on

C[a, b].

The metric d∞ measures the “distance” from f to g as the maximum of

vertical distances from points (t, f(t)) to (t, g(t)) on the graphs of f and g,

respectively. d1(f, g) represents as a measure of the distance between the

functions f and g to be the area enclosed between their graphs from x = a

to x = b.
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We can also define an another metric on C [a, b]. Let f, g ∈ C [a, b],

define

d (f, g) =

(
∫ b

a

|f(t) − g(t)|p dt

) 1
p

for p ≥ 1.

Then (C [a, b] , d) is a metric space.

Problem 1.4. Let (X, d) be a metric space. Then prove that

(a) |d(x, z) − d(z, y)| ≤ d(x, y) for all x, y ∈ X;

(b) |d(x1, y1) − d(x2, y2)| ≤ d(x1, x2) + d(y1, y2) for all x1, x2, y1, y2 ∈ X.

Problem 1.5. Let K be the set of all real or complex numbers. Prove that

for each x, y ∈ K,

d1(x, y) = min{1, |x − y|}
and

d (x, y) =

{
0, if x = y

|x| + |y|, if x 6= y

are metrics on K.

Problem 1.6. Let X = [0, 1). For each x, y ∈ X, we define

d(x, y) = |x − y|.
Prove that (X, d) is a metric space.

Problem 1.7. Let X = Q, the set of all rational numbers. Show that for

each x, y ∈ X,

d(x, y) = |x − y|
is a metric on X.

Problem 1.8. Let X = R2 and for each x = (x1, x2), y = (y1, y2) ∈ X, let

d (x, y) =

{ |x1 − y1|, if x2 = y2

|x1| + |y1| + |x2 − y2|, if x2 6= y2.

Then prove that (X, d) is a metric space.

Problem 1.9. Let X = R2 and x = (0, 2), y = (3, 6) in X. Then find the

distance between x and y by using the metrics (a) usual, (b) taxicab, (c)

max, and (d) discrete.
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Problem 1.10. Let d1 and d2 are metrics on a set X. Is min{d1, d2} also

a metric on X? Justify your answer.

Problem 1.11. Let (Xi, di), i = 1, 2, . . . , n, be metric spaces and X =

X1×X2 ×· · ·×Xn. Then prove that for each x = (x1, x2, . . . , xn) ∈ X and

y = (y1, y2, . . . , yn) ∈ X,

d1(x, y) = max
1≤i≤n

di(xi, yi)

and

d2(x, y) =

n∑

i=1

di(xi, yi)

are metrics on X.

Problem 1.12. Let (X, d) be a metric space. Prove that for each x, y ∈ X,

d∗(x, y) =
d(x, y)

1 + d(x, y)

is also a metric on X.
(

Hint: Use
a

1 + a
+

b

1 + b
≥ a + b

1 + a + b
for all a ≥ 0, b ≥ 0.

)

Problem 1.13. Let X = c, the space of all convergent sequences {xn},
where lim

n→∞
xn exists and finite, and for each x = (x1, x2, . . .) ∈ X and

y = (y1, y2, . . .) ∈ X, let

d(x, y) = sup
i

|xi − yi|.

Then prove that (X, d) is a metric space.

1.2 Distance Between Sets and Diameter of a Set

Definition 1.2. Let (X, d) be a metric space and let A and B be nonempty

subsets of X . The distance between the sets A and B, denoted by ρ (A, B),

is given by

ρ (A, B) = inf {d(x, y) : x ∈ A, y ∈ B}
Since d(x, y) = d(y, x), we have ρ (A, B) = ρ (B, A) .

If A consists of a single point x, then

ρ ({x} , B) = inf {d(x, y) : y ∈ B} .

It is called the distance of a point x ∈ X from the set B, and is denoted by

ρ (x, B).
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Remark 1.4. (i) The equation ρ (x, B) = 0 does not imply that x belongs

to B.

(ii) If ρ (A, B) = 0, then it does not imply that A and B have common

points.

Example 1.13. Let A = {x ∈ R : x > 0} and B = {x ∈ R : x < 0} be

subsets of R with the usual metric. Then ρ (A, B) = 0, but A and B have

no common point. If x = 0 then ρ (x, B) = 0, but x /∈ B.

Definition 1.3. Let (X, d) be a metric space and let A be a nonempty

subset of X . The diameter of A, denoted by δ (A), is given by

δ (A) = sup {d(x, y) : x, y ∈ A} .

The set A is called bounded if δ (A) ≤ k < ∞. In other words, A is bounded

if its diameter is finite, otherwise it is called unbounded.

In particular, the metric space (X, d) is bounded if the set X is bounded.

Example 1.14. (a) The real line with the usual metric is an unbounded

metric space.

(b) In R with the usual metric, the intervals [a, b], (a, b), [a, b) and (a, b] are

bounded. But [a,∞) and (−∞, a] are not bounded.

(c) The space s of all sequences of real or complex numbers with the metric

defined in Example 1.9 is a bounded space since d(x, y) <
n∑

i=1

1

2i
.

(d) Every set in a discrete metric space (X, d) is bounded and its diameter

is 1.

Example 1.15. Consider the unit sphere S = {(x, y) ∈ R × R : 0 ≤ x ≤
1, 0 ≤ y ≤ 1} in R2. With the usual metric d, the diameter of S is

√
2; with

the taxicab metric, its diameter is 2; with the max metric, its diameter is

1; and with the discrete metric its diameter is 1.

R

R

1

1

√
2
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Remark 1.5. Let (X, d) be a metric space. We can define other metrics

on X with the help of d in the following manner:

d1 (x, y) =
d (x, y)

1 + d (x, y)
and d2 (x, y) = min {1, d (x, y)} .

Then d1 and d2 are metrics on X and with these metrics (X, d1) and (X, d2)

are bounded metric spaces irrespective of whether the metric space (X, d)

is bounded or not.

Problem 1.14. Determine the distance from (3, 4) to the unit square

[0, 1] × [0, 1] in R2 with respect to the metrics (a) usual, (b) taxicab, (c)

max, and (d) discrete.

Problem 1.15. Let A = {x = (x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 ≤ 1} be the

unit sphere in R3. Compute the diameter of A with respect to each of the

following metrics: (a) usual, (b) taxicab, (c) max, and (d) discrete.

Problem 1.16. If (X, d) is a metric space with discrete metric and A is a

subset of X with at least two elements, then show that the diameter of A is

1.

Problem 1.17. Let A = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1} and let

x = (1, 1). Find the distance from x to A for the following metrics: (a)

usual, (b) taxicab, (c) max, and (d) discrete.

Problem 1.18. Let A and B be nonempty subsets of a metric space (X, d).

Prove that

(a) δ(A) = 0 if and only if A is a singleton set;

(b) For each x ∈ A, y ∈ B, ρ (A, B) ≤ d (x, y);

(c) If A ⊆ B, then δ (A) ≤ δ (B);

(d) For each x ∈ A, y ∈ B, d (x, y) ≤ δ (A ∪ B);

(e) δ (A ∪ B) ≤ δ (A) + ρ (A, B) + δ(B);

(f) If A ∩ B 6= ∅, then δ (A ∪ B) ≤ δ (A) + δ(B);

(g) d(x, A) ≤ d(x, y) + d(y, A) for all x, y ∈ X.

Proof. [Proof of (e) and (f)]. Let a and b be arbitrary elements of A

and B, respectively, and let x, y ∈ A ∪ B. If both x and y are in A, then

d(x, y) ≤ δ(A). If both x and y are in B, then d(x, y) ≤ δ(B).

If x ∈ A and y ∈ B, then by the triangle inequality, we have

d(x, y) ≤ d(x, a) + d(a, y)

≤ d(x, a) + d(a, b) + d(b, y)

≤ δ(A) + d(a, b) + δ(B).
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Similarly, if x ∈ B and y ∈ A, we have

d(x, y) ≤ δ(A) + d(a, b) + δ(B).

Thus,

d(x, y) ≤ δ(A) + d(a, b) + δ(B) for all x, y ∈ A ∪ B.

Therefore,

δ(A ∪ B) ≤ δ(A) + d(a, b) + δ(B) for all x ∈ A, y ∈ B.

Hence,

δ(A ∪ B) ≤ δ(A) + ρ(A, B) + δ(B).

Now, if A ∩ B 6= ∅, we have ρ(A, B) = 0 and hence δ(A ∪ B) ≤ δ(A) +

δ(B). �

1.3 Open Sets and Interior Points

Definition 1.4. Let (X, d) be a metric space. Given a point x0 ∈ X and

a real number r > 0, the sets

Sr (x0) = {y ∈ X : d (x0, y) < r}
and

Sr[x0] = {y ∈ X : d (x0, y) ≤ r}
are called open sphere (or open ball) and closed sphere (or closed ball),

respectively, with center x and radius r.

Remark 1.6. (a) The open and closed spheres are always nonempty, since

x0 ∈ Sr (x0) ⊆ Sr [x0].

(b) Every open (respectively, closed) sphere in R with the usual metric is

an open (respectively, closed) interval. But the converse is not true; for

example, (−∞,∞) (respectively, [−∞,∞]) is an open (respectively, closed)

interval in R but not an open (respectively, closed) sphere.

Example 1.16. 1. In the metric space R with the usual metric, the spheres

Sr (x0) and Sr [x0] are intervals

(x0 − r, x0 + r) and [x0 − r, x0 + r] ,

respectively.
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2. In the metric space C with the usual metric, the sphere Sr (z0) and Sr [z0]

are circular discs

|z − z0| < r and |z − z0| ≤ r,

respectively, where z0 ∈ C and r > 0.

3. Let X be a nonempty set with the discrete metric d. Then the open

sphere Sr (x0) is

Sr (x0) =

{ {x0} , if 0 < r ≤ 1,

X, if r > 1,

and the closed sphere Sr [x0] is

Sr [x0] =

{ {x0} if 0 < r < 1,

X, if r ≥ 1.

4. Let X = [0, 1) be a metric space with the usual metric d (x, y) = |x − y|,
for all x, y ∈ X. Then the open sphere Sr (0) is

Sr (0) =

{
[0, r), if r ≤ 1,

[0, 1), if r > 1,

and the closed sphere Sr [0] is

Sr [0] =

{
[0, r), if r < 1,

[0, 1), if r ≥ 1.

5. In R2, the open sphere with center 0 and radius 1 with respect to the

metrics d1, d2 and d∞, respectively, (in Example 1.7), are

S1
1 (0) =

{
y = (y1, y2) ∈ R2 : |y1| + |y2| < 1

}
,

S2
1 (0) =

{

y = (y1, y2) ∈ R2 : |y1|2 + |y2|2 < 1
}

,

and

S∞
1 (0) =

{
y ∈ (y1, y2) ∈ R2 : max (|y1| , |y2|) < 1

}
.

Similarly, we can define the closed spheres.

6. In the metric space C [a, b], the open sphere Sr (f0) with center f0 and

radius r is the set of continuous functions g such that

sup
t∈[0,1]

|f (t) − g (t)| < r,

that is, the set of continuous functions g whose graphs lie within the shaded

band of vertical width 2r centered on the graph of f0.
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R

R

S 11 (0)

S2
1(0)

S∞
1 (0)

Fig. 1.1 Balls in R2

R

R

f0 − r

f0 + r

|f − f0| < r

2r

r

r

a b

Fig. 1.2 Ball in C[a, b]

Definition 1.5. Let A be a nonempty subset of a metric space X .

(i) A point x ∈ A is said to be an interior point of A if x is the center of

some sphere contained in A;

In other words, x ∈ A is an interior point of A if there exists r > 0 such
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that Sr (x) ⊆ A.

x

Sr(x)

A

X

(ii) The set of all interior points of A is called interior of A and is denoted

by A◦, that is,

A◦ = {x ∈ A : Sr (x) ⊆ A for some r > 0} .

(iii) The set A is said to be open if each of its points is the center of some

open sphere contained entirely in A; That is to say, A is an open set if

for each x ∈ A, there exists r > 0 such that Sr(x) ⊆ A.

(iv) Let x ∈ X . The set A is said to be a neighbourhood of x if there exists an

open sphere centered at x and contained in A, that is, if Sr(x) ⊆ A, for

some r > 0. In case, A is an open set, it is called an open neighbourhood

of x.

Remark 1.7. (a) In particular, an open sphere Sr(x) with center x and

radius r is a neighborhood of x.

(b) The interior of A is the neighbourhood of each of its points.

(c) Every open set is the neighbourhood of each of its points.

(d) The set A is open if and only if each of its points is an interior point,

that is, A = A◦.

Example 1.17. 1. Let R be the usual metric space and A be a subset of

R.

(a) A = (a, b), [a, b), [a, b, ], or (a, b], then A◦ = (a, b)

(b) If A = N, Z, Q or the set of irrational numbers, then A◦ = ∅.
(c) If A is a finite set, then A◦ = ∅.
(d) If A = C, the cantor set, then A◦ = ∅.
(e) If A = ∅, then A◦ = ∅.
(f) If A = R, then A◦ = R.

2. Let A be a nonempty subset of a discrete metric space X . Then A◦ = A.
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Example 1.18. 1. In R with the usual metric

(a) R is an open set;

(b) (a, b) is an open set;

(c) (a, b], [a, b) and [a, b] are not open sets;

(d) The set
{
1, 1

2 , 1
3 , · · ·

}
is not open;

(e) A set consists a singleton is not an open set;

(f) The set of all rational numbers Q is not open. But it is open with

respect to the metric d (x, y) = |x − y| defined on Q;

(g) The cantor set C is not an open set.

2. Let X = [0, 1) with the metric d (x, y) = |x − y| for all x, y ∈ X . Then

[0, α), α ≤ 1, is an open set.

3. In the discrete metric space X , every subset of X is an open set.

Remark 1.8. (a) In a metric space X , the empty set ∅ and the whole space

X are open sets.

(b) Whether a set is open or not open depends upon the space in which

it is considered. For example, identify the real line R with horizontal axis

{(x, 0) ∈ R2 : x ∈ R} in R2. R is not an open subset of R2 since R does not

contain any open sphere in R2.

Theorem 1.1. Let A and B be two subsets of a metric space X. Then

(i) A ⊆ B implies A◦ ⊆ B◦;

(ii) (A ∩ B)
◦

= A◦ ∩ B◦;

(iii) (A ∪ B)
◦ ⊇ A◦ ∪ B◦.

Proof. (i) Let x ∈ A◦. Then there exists an open sphere Sr (x) ⊆ A.

Since A ⊆ B, Sr (x) ⊆ B and hence x ∈ B◦. Thus A◦ ⊆ B◦.

(ii) Let x ∈ (A ∩ B)
◦
. Then there exists an open sphere Sr (x) ⊆ A ∩ B.

Therefore, Sr (x) ⊆ A and Sr (x) ⊆ B and hence x ∈ A◦ and x ∈ B◦. So,

x ∈ A◦ ∩ B◦ and thus (A ∩ B)
◦ ⊆ A◦ ∩ B◦.

To prove the reverse inclusion, let us suppose that y ∈ A◦ ∩ B◦. Then

y ∈ A◦ and y ∈ B◦ and therefore, there exist open spheres Sr1
(y) ⊆ A

and Sr2
(y) ⊆ B. Set r = min {r1, r2}. Then Sr (y) ⊆ A ∩ B and hence

y ∈ (A ∩ B)
◦
. Consequently, A◦ ∩ B◦ ⊆ (A ∩ B)

◦
.

(iii) Let x ∈ A◦∪B◦. Then either x ∈ A◦ or x ∈ B◦. This implies that there

exists an open sphere Sr (x) ⊆ A or Sr (x) ⊆ B for some r. So, we have

Sr (x) ⊆ A ∪ B and therefore x ∈ (A ∪ B)
◦
. Hence A◦ ∪ B◦ ⊆ (A ∪ B)

◦
. �
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Remark 1.9. (A ∪ B)◦ 6⊂ A◦ ∪ B◦. For example, let X = R be the usual

metric space and A = [0, 1] and B = [1, 2]. Then A ∪ B = [0, 2]. Note

that A◦ = (0, 1), B◦ = (1, 2) and (A ∪ B)◦ = (0, 2). This shows that

A◦ ∪ B◦ ⊆ (A ∪ B)◦ but (A ∪ B)◦ 6⊂ A◦ ∪ B◦.

Theorem 1.2. Let (X, d) be a metric space. Then

(i) each open sphere in X is an open set;

(ii) a subset A of X is open if and only if it is the union of open spheres.

x0

r

Sr(x0)

r1 < d(x0, y0)

y0
r1S

r
1 (y

0 )

x0

r

Sr(x0)

r1 > d(x0, y0)

y0 r1S
r
1 (y

0 )

Fig. 1.3

Proof. (i) Let Sr (x0) = {x ∈ X : d (x, x0) < r} be an open sphere in X

and let y0 ∈ Sr (x0). We have to produce an open sphere centered at y0

and contained in Sr (x0). Since y0 ∈ Sr (x0), we have d (x0, y0) < r. Set

r1 = r − d (x0, y0) > 0.

Consider

Sr1
(y0) = {y ∈ X : d (y, y0) < r1} .

We have to show that Sr1
(y0) ⊆ Sr (x0). For this, let y ∈ Sr1

(y0) be

arbitrary. Then d (y, y0) < r1 and therefore

d (x0, y) ≤ d (x0,y0) + d (y0, y) (by triangle inequality)

< d (x0, y0) + r1 = r.

Thus y ∈ Sr (x0) and consequently, Sr1
(y0) ⊆ Sr (x0).
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x0

r
Sr(x0)

x r1

S r1
(x

)

Fig. 1.4

(ii) Suppose that A is an open set. Then, each of its points is the center

of an open sphere contained in A. Hence A is the union of all the open

spheres contained in it.

To prove the converse part, let us assume that A is the union of a

collection F of open spheres. Let x ∈ A be arbitrary. Then, x belongs to

some open sphere, say Sr (x0) ∈ F . Since each open sphere is an open set,

x is the center of an open sphere Sr1
(x) such that Sr1

(x) ⊆ Sr (x0). But

Sr (x0) ⊆ A and hence Sr1
(x) ⊆ A. Therefore A is open �

Theorem 1.3. Let (X, d) be a metric space. Then

(i) arbitrary union of open sets in X is open;

(ii) finite intersection of open sets in X is open.

Proof. (i) Let Λ be any index set, {Aα}α∈Λ be a family of open sets in X

and let A =
⋃

α∈Λ

Aα. Since each Aα is open, it is the union of open spheres

for each α ∈ Λ. Then A is the union of unions of open spheres. Hence, by

Theorem 1.2, A is open.

(ii) Let {Ai : i = 1, 2, . . . , n} be the finite family of open sets in X and let

A =
n⋂

i=1

Ai. Let x ∈ A. Then x is in each Ai. But each Ai is open,

hence for each i, there exists ri > 0 such that Sri
(x) ⊆ Ai. Set r =

min {r1, r2, . . . , rn}. Then

Sr (x) ⊆ Sri
(x) ⊆ Ai for each i = 1, 2, . . . , n.

Therefore Sr (x) ⊆
n⋂

i=1

Ai = A and hence A is open.
�

Remark 1.10. Arbitrary intersection of open sets need not be open. For
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example, let X = R with the usual metric. Consider the family An =
(
− 1

n , 1
n

)
, n ∈ N, of open sets. Then

∞⋂

i=1

An = {0} which is not open.

Theorem 1.4. Let A be a subset of a metric space X. Then A◦ is the

largest open subset of A.

Proof. First of all, we shall prove that A◦ is an open set. For that,

let x ∈ A◦ be arbitrary. Then, by definition, there exists an open sphere

Sr (x) ⊆ A. But Sr (x) is an open set, so each of its points is the center

of some open sphere contained in Sr (x). Therefore, each point of Sr (x) is

the interior point of A, that is, Sr (x) ⊆ A◦. Thus, x is the center of an

open sphere contained in A◦. Hence A◦ is an open set.

Let B ⊆ A be an arbitrary open set and let x ∈ B. Then there exists

Sr (x) ⊆ B ⊆ A. This implies that x ∈ A◦ and hence B ⊆ A◦ ⊆ A. Since

A◦ is open, A◦ is the largest open subset of A. �

Remark 1.11. A◦ is the union of all open subsets of A.

Problem 1.19. Find the open spheres with center 0 and radius 1 in the

metric spaces with respect to the metrics defined in Problems 1.5 and 1.8.

Problem 1.20. Let A be a subset of a metric space X. Prove that (A◦)
◦

=

A◦.

Problem 1.21. In Rn, let R denote the set of points having only rational

coordinates and I its complements, that is, the set of points having at least

one irrational coordinate. Then prove that R◦ = I◦ = ∅.

Problem 1.22. Let (X, d) be a metric space, a ∈ X and 0 < r < r′. Prove

that the set {x ∈ X : r < d(x, a) < r′} is open in X.

Problem 1.23. Let (X, d) be a metric space and

d∗(x, y) =
d(x, y)

1 + d(x, y)
.

Prove that the two metric spaces (X, d) and (X, d∗) have precisely:

(i) the same family of open spheres with one exception. What is this ex-

ception?

(ii) the same family of open sets.

Problem 1.24. Let R be the same as in Problem 1.21. Prove that
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(i) every nonempty open set in Rn contains a member of R;

(ii) every nonempty open set in Rn contains infinitely many members of R.

Problem 1.25. Let (X, d) be a metric space and x, y distinct points of X.

Prove that there exist disjoint open spheres centered on x and y.

1.4 Closed Sets and Closure of Sets

Definition 1.6. Let A be a subset of a metric space X . A point x ∈ X is

called a limit point (accumulation point or cluster point) of A if each open

sphere centered on x contains at least one point of A different from x.

In other words, x ∈ X is a limit point of A if

(Sr (x) − {x}) ∩ A 6= ∅.
The set of all limit points of A is called derived set and it is denoted by A′.

Example 1.19. 1. In the usual metric space R,

(a) if A =
{
1, 1

2 , 1
3 , · · ·

}
, then A′ = {0};

(b) if A = N or Z, then A′ = ∅;
(c) if A is the set of all rational or irrational numbers, then A′ = R
(d) every point on the real line is a limit point, and therefore, R′ = R;

(e) if A is a cantor set C, then A′ = C.

2. If A is a subset of a discrete metric space, then A′ = A.

Remark 1.12. By the definition of a limit point, we follow that any open

sphere centered on a limit point of A must contain infinitely many points

of A, that is, to say, a point x ∈ X is a limit point of A if Sr (x) ∩ A is an

infinite set for each r > 0.

Let Sr (x) contain a point x1of A different from x. If d (x, x1) = r1, the

sphere Sr1
(x) contains a point x2 of A different from x and x1. And so an

indefinitely. It should be noted that a limit point of A is not necessarily a

point of A. For example, in Example 1.19 1(a), 0 is the only limit point of

the set A =
{
1, 1

2 , 1
3 , · · ·

}
which is not in A.

In view of the above remark, we have the following definition.

Definition 1.7. A point x ∈ X is said to be an isolated point of X if each

open sphere centered on x contains no point of A other than x itself, that

is, if Sr (x) ∩ A = {x} for some r > 0.
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Remark 1.13. If a point x ∈ X is not a limit point of A then it is an

isolated point. Hence every point of a metric space X is either a limit point

or an isolated point of X .

Example 1.20. Consider the metric space X =
{
0, 1, 1

2 , 1
3 , 1

4 , · · ·
}

with the

usual metric given by the absolute value. Then 0 is the only limit point of

X while all other points are the isolated point of X .

Definition 1.8. Let A be a subset of a metric space X . The closure of A,

denoted by A, is the union of A and the set of all its limit points, that is,

A = A ∪ A′.

In other words, x ∈ A if every open sphere Sr (x) with center x and

radius r > 0 contains a point of A, that is, x ∈ A if Sr (x)∩A 6= ∅ for every

r > 0.

Remark 1.14. Let A and B be subsets of a metric space X . Then

(i) ∅ = ∅
(ii) X = X

(iii) (A) = A

(iv) A ⊆ B implies A ⊆ B

(v) A ∪ B = A ∪ B

(vi) A =
(
A
)′

(vii) A ∩ B ⊆ A ∩ B, but A ∩ B + A ∩ B, for example, in the usual metric

space R, consider the sets A = (0, 1) and B = (1, 2). Then A ∩ B =

[0, 1] ∩ [1, 2] = {1}, but A ∩ B = ∅ and hence A ∩ B + A ∩ B.

Theorem 1.5. Let (X, d) be metric space and A be a subset of X. Then

x ∈ A if and only if ρ (x, A) = 0.

Proof. Since ρ (x, A) = inf {d (x, y) : y ∈ A}, we have ρ (x, A) = 0 if and

only if every open sphere Sr (x) contains a point of A. Hence ρ (x, A) = 0

if and only if x ∈ A. �

Definition 1.9. Let A be a subset of a metric space X . The set A is said

to be closed if it contains all its limit points, that is, A′ ⊆ A.

It is obvious that A is closed if and only if A = A.

Example 1.21. In the usual metric space R,

(i) the sets of all rational and irrational numbers are not closed;

(ii) the set A =
{
1, 1

2 , 1
3 , · · · ,

}
is not closed, since A′ = {0} * A;
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(iii) the cantor set C is closed since A′ = A ⊆ A.

Remark 1.15. In a metric space X , every finite set, empty set and whole

space are closed sets.

Problem 1.26. Verify that every subset of the discrete metric space is

closed.

Theorem 1.6. Let A be a subset of a metric space X. Then, A is closed

if and only if the complement of A is an open set.

Proof. Let A be closed and x ∈ Ac, the complement of A, be arbitrary.

Then x /∈ A and also x cannot be a limit point of A since A is closed. Then

there exists an open sphere Sr (x) such that Sr (x) ∩ A = ∅. This implies

that Sr (x) ⊆ Ac for some r > 0. Since x ∈ Ac is arbitrary, each point of

Ac is the center of some open sphere which is contained in Ac. Hence Ac

is open.

Conversely, assume that Ac is open. Let x ∈ X be a limit point of A. If

x ∈ A, then A contains all its limit points and hence A is closed. If x /∈ A,

then x ∈ Ac. Since Ac is open, there exists an open sphere Sr (x) ⊆ Ac.

Consequently, Sr (x) ∩ A = ∅ for some r > 0. Hence x cannot be a limit

point of A which contradicts to our assumption. Therefore x ∈ A. This

proves that A is closed. �

Theorem 1.7. In a metric space (X, d), every closed sphere is a closed set.

Proof. Let Sr [x] be a closed sphere in X . Then it is sufficient to show

that (Sr [x])
c
, the complement of Sr [x], is an open set. Let y1 ∈ (Sr [x])

c

be arbitrary. Then y /∈ Sr [x] and therefore d (x, y) > r.

Set r1 = d (x, y) − r > 0. Let z ∈ Sr1
(y). Then d (z, y) < r1. By

triangle inequality

d(x, y) ≤ d (x, z) + d(z, y)

and we have

d(x, z) ≥ d (x, y) − d(z, y) > d (x, y) − r1 = r.

Therefore z /∈ Sr [x] and hence z ∈ (Sr [x])
c
. Thus Sr1

(y) ⊆ (Sr [x])
c
. But

y ∈ (Sr [x])
c

being arbitrary, each point of (Sr [x])
c

is the center of some

open sphere contained in (Sr [x])
c
. Hence (Sr [x])

c
is an open set. �

By using De Morgan’s law

⋂

α∈Λ

(Ac
α) =

(
⋃

α∈Λ

Aα

)c
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x y

z

r

r1

X
d(x, y) > r

Fig. 1.5

and

n⋃

i=1

Ac
i =

(
n⋂

i=1

Ai

)c

and Theorem 1.3, we have the following result.

Theorem 1.8. In a metric space X,

(i) the arbitrary intersection of closed sets in X is closed; and

(ii) the finite union of closed sets in X is closed.

Remark 1.16. The arbitrary union of closed sets need not be closed.

Example 1.22. Consider the family
{[

1
n , 2
]

: n ∈ N
}

of closed sets in the

usual metric space R. Then

⋃
{[

1

n
, 2

]

: n ∈ N

}

= (0, 2]

which is not a closed set.

Theorem 1.9. Let (X, d) be a metric space and A be a subset of X. Then

A is the smallest closed subset of X containing A.

Proof. Let x be a limit point of A. Then, for a given ε > 0,
(
Sε/2(x) − {x}

)
∩ A 6= ∅. This implies that there exists y ∈ A such that

y ∈
(
Sε/2(x) − {x}

)
, that is, d (x, y) < ε

2 . But since y ∈ A, we have
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Sε/2 (y) ∩ A 6= ∅, that is, there exists z ∈ A such that z ∈ Sε/2 (y). This

implies that d (y, z) < ε
2 . Now, by triangle inequality, we have

d (x, z) ≤ d (x, y) + d (y, z)

<
ε

2
+

ε

2
= ε.

This means that, for every ε > 0, the open sphere Sε (x) contains a point z

of A. Hence x is a limit point of A and therefore x ∈ A. This proves that

A is a closed set.

Now, we shall show that A is the smallest set containing A. Assume

that B is any closed subset of X such that A ⊆ B, then it is sufficient to

prove that A ⊆ B. Let x ∈ A, then either x ∈ A or x is a limit point of A.

If x ∈ A, then x ∈ B and hence A ⊆ B. If x is a limit point of A, then for a

given ε > 0, (Sε(x) − {x}) ∩A 6= ∅, that is, there exists a point y ∈ A such

that y ∈
(
Sε/2(x) − {x}

)
. Then d (x, y) < ε. But since A ⊆ B and y ∈ A,

we have y ∈ B. Therefore, x is a limit point of B. Since B is a closed set,

x ∈ B and thus A ⊆ B. �

Problem 1.27. Let A be a subset of a metric space X. Prove that A is

the intersection of all closed subsets of X containing A.

Definition 1.10. Let A be a subset of a metric space X . A point x ∈ X is

called a boundary point of A if it is neither an interior point of A nor X \A,

that is, x /∈ A◦ and x /∈ (X \ A)
◦
.

In other words, x ∈ X is a boundary point of A if every open sphere

centered on x intersects both A and X \ A.

The set of all boundary points of A is called the boundary of A and it

is denoted by b(A).

Example 1.23. 1. Let R be the usual metric space and A ⊆ R.

(a) If A = [a, b], [a, b), (a, b] or (a, b), then b(A) = {a, b}.
(b) If A = N (or I), then b (A) = N (respectively, I). check?

(c) If A =
{
1, 1

2 , 1
3 , · · · ,

}
, then b (A) =

{
0, 1, 1

2 , 1
3 , · · · ,

}
.

(d) If A = Q, then b(A) = R. check?

(e) If A is a set of all irrational numbers, then b(A) = R. check?

2. Let (X, d) be a discrete metric space and A ⊆ X . Then b (A) = ∅.

Problem 1.28. Determine the derive set of the following sets.

(a) A finite set A = {1, 2, · · · , n}. (Ans. no limit point)
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(b) R =
{
(x1, x2) :∈ R2 : x1, x2 are rational coordinates

}

(Ans. entire plane = R2.)

Problem 1.29. Let A be a subset of a metric space X. Prove that

(i) (X \ A) = X \ A◦, that is, (Ac) = (A◦)
c
.

(ii) (Ac)◦ =
(
A
)c

Problem 1.30. Let (X, d) be a metric space and A a closed subset of X.

Prove that x ∈ A if and only if d (x, A) = 0 and hence

x ∈ X \ A if and only if d (x, A) > 0.

Problem 1.31. Let (X, d) be a metric space, x ∈ X and A ⊆ X be a

nonempty set. Prove that d (x, A) = 0 if and only if every neighbourhood of

x contains a point of A.

Problem 1.32. Let (X, d) be a metric space and A ⊆ X be a nonempty

set. Show that x ∈ A if and only if d (x, A) = 0.

Problem 1.33. Let (X, d) be a metric space and A, B be nonempty subsets

of X. Show that d (x, A) = d (x, B) for all x ∈ X if and only if K = D.

Problem 1.34. Let A be a subset of a metric space X. Prove that A = X

if and only if (X \ A)
◦

= ∅, that is, (Ac)
◦

= ∅.

Problem 1.35. Let (X, d) be a metric space and A ⊆ X. Prove the fol-

lowing statements.

(a) b (A) = b (X \ A) = A ∩ (X \ A).

(b) b (A) = A \ A◦ = (X \ A) \ (X \ A)
◦

(c) X \ b(A) = A◦ ∪ (X \ A)
◦
? Check

(d) A = A ∪ b (A)

(e) A◦ = A \ b (A)

(f) A is closed if and only if b (A) ⊆ A

(g) A is open if and only if A ∩ b (A) = ∅.

1.5 Subspaces

Let (X, d) be a metric space and Y a subset of X . We may convert Y

into a metric space by restricting the distance function d to Y × Y . In this

manner each subset Y of X can be made a metric space
(
Y, d|Y ×Y

)
. On

the other hand, we may be given two metric spaces (X, d) and (Y, d′). If Y
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is a subset of X , it makes sense to ask whether or not d′ is the restriction

of d.

Definition 1.11. Let (X, d) be a metric space and Y a subset of X . The

relative metric dY on Y is the restriction of the metric function d on Y ×Y ,

that is,

dY (x, y) = d (x, y) for all x, y ∈ Y.

It is easy to see that dY is a metric on Y . The space (Y, dY ) is called the

metric subspace of the metric space (X, d).

In other words, let (X, d) and (Y, d′) be metric spaces. We say that

(Y, d′) is a subspace of (X, d) if

(i) Y is a subset of X ;

(ii) d′ = d|Y ×Y
restriction of d on Y × Y .

Example 1.24.

(1) Let R be an usual metric space. If Y = [0, 1] , (0, 1], [0, 1) or (0, 1)

and dY (x, y) = |x − y| = d (x, y) for all x, y ∈ Y . Then (Y, dY ) is a

subspace of (R, |·|) .

(2) Let R be the usual metric space and Q be the set of rational numbers.

Define dQ : Q × Q → R by

dQ (x, y) = |x − y| = d (x, y) for all x, y ∈ Q.

Then (Q, dQ) is a subspace of (R, |·|).
(3) Let In (the unit n cube) be the set of all n-tuples (x1, x2, · · · , xn)

of real numbers such that 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n. Define

dc : In × In → R by

dc (x, y) = max
1≤i≤n

{|xi − yi|}

for all x = (x1, x2, . . . , xn) ∈ In and y = (y1, y2, · · · , yn) ∈ In. Then

(In, dc) is a subspace of (Rn, d∞), where d∞ is the max metric on Rn,

that is, d∞ (x, y) = max
1≤i≤n

{|xi − yi|}, for all x, y ∈ Rn.

(4) Let Sn (the n− sphere) be the set of all n+1-tuples (x1, x2, . . . , xn+1) of

real numbers such that x2
1+x2

2+· · ·+x2
n+1 = 1. Define dS : Sn×Sn → R

by

dS (x, y) =

√
√
√
√

n+1∑

i=1

(xi − yi)
2

= d2 (x, y) ,
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where d2 is a metric on Rn defined as d2 (x, y) =

(
n∑

i=1

(xi − yi)
2

)1/2

,

for all x, y ∈ Rn. Then (Sn, dS) is a subspace of
(
Rn+1, d2

)
.

(5) Let A be the set of all (n + 1)-tuples (x1, x2, . . . , xn+1) of real numbers

such that xn+1 = 0. Define dA : A × A → R by

dA (x, y) = max
1≤i≤n

{|xi − yi|} = d∞ (x, y) ,

for all x = (x1, x2, . . . , xn, 0) ∈ A and y = (y1, y2, . . . , yn, 0) ∈ A, where

d∞ is the max metric on Rn+1.

Then (A, dA) is a subspace of
(
Rn+1, d∞

)
.

(6) Let P [a, b] be the set of all polynomials defined on [a, b]. Define dP :

P [a, b] × P [a, b] → R by

dP (f, g) = max
t∈[a,b]

|f (t) − g (t)| = d∞ (f, g) ,

where d∞ is the max metric on C [a, b]. Then (P [a, b] , dP) is a subspace

(C[a, b], d∞). But (P [a, b] , dP) is not a subspace of (C[a, b], d), where

d (f, g) =
∫ a

b |f (t) − g (t)| dt.

The following lemma can be easily proved.

Lemma 1.1. Let (Y, dY ) be a subspace of a metric space (X, d). If a ∈ Y

and r > 0, then

S′
r (a) = Y ∩ Sr(a),

where Sr(a) and S′
r (a) are open spheres in (X, d) and (Y, dY ), respectively.

Theorem 1.10. Let (Y, dY ) be a subspace of a metric space (X, d). Then

a subset M of Y is a neighbourhood of a point y ∈ Y if and only if there is

a neighbourhood N of y in (X, d) such that M = Y ∩ N .

Proof. Let N be a neighbourhood of a point y ∈ Y in (X, d) such that

M = Y ∩N . Then there exists an open sphere Sr (y) such that Sr (y) ⊆ N .

Since S′
r (y) = Y ∩ Sr(y), we have S′

r (y) ⊆ Y ∩ N = M . Hence M is a

neighbourhood of y ∈ Y in (Y, dY ).

Conversely, suppose that M is a neighbourhood of y in (Y, dY ). Then

there exists an open sphere S ′
r (y) ⊆ M . Let N = M ∪ Sr (y). Then

Y ∩ N = Y ∩ (M ∪ Sr (y)) = (Y ∩ M) ∪ (Y ∩ Sr (y))

= M ∪ S′
r (y) = M, since M ⊆ Y

Since Sr (y) ⊆ N , N is a neighbourhood of y in (X, d). �
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Theorem 1.11. Let (Y, dY ) be a subspace of a metric space (X, d) and A

a subset of Y . Then

(i) A is open in Y if and only if there exists an open set G in X such that

A = G ∩ Y ;

(ii) A is closed in Y if and only if there exists a closed set F in X such

that A = F ∩ Y .

Proof. (i) Let Sr (x) and S′
r (x) be the same as in Lemma 1.1. Suppose

that A = G ∩ Y and let x ∈ A be arbitrary. Then we have to show that x

is an interior point of A, that is, x ∈ A◦ with respect to dY metric.

Since A = G∩Y and x ∈ A, we have x ∈ G and x ∈ Y . Since G is open

in X , there exists r > 0 such that Sr (x) ⊆ G. Also, since x ∈ Y , we have

S′
r (x) = Sr (x) ∩ Y ⊆ G ∩ Y = A.

It follows that x is an interior point of A as a subset of the metric space

(Y, dY ). Hence x ∈ A◦ with respect to dY metric and hence A is open in

Y .

Conversely, assume that A is an open set in Y and let x ∈ A be arbitrary.

Then there exists an open sphere S ′
rx

(x) such that S′
rx

(x) ⊆ A. Now

A =
⋃

x∈A

S′
rx

(x) =
⋃

x∈A

(Srx
(x) ∩ Y ) =

(
⋃

x∈A

Srx
(x)

)

∩ Y

= G ∩ Y, where G =
⋃

x∈A

S′
rx

(x) .

But G being an arbitrary union of open spheres in X is an open set in X.

Hence A = G ∩ Y , where G is an open set in X .

(ii) A is closed in Y ⇔ Y \ A is open in Y

⇔ Y \ A = G ∩ Y, (by part (i)) where G is open in X

⇔ A = Y \ (G ∩ Y )

⇔ A = (X ∩ Y ) \ (G ∩ Y )

⇔ A = (X \ G) \ ∩Y

⇔ A = F ∩ Y, where F = X \ G is a closed set in X.
�

Corollary 1.1. Let (Y, dY ) be a subspace of a metric space (X, d) and A a

subset of X. Then

(i) A is open in Y and Y is open in X that A is open in X;
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(ii) A is closed in Y and Y is closed in X then A is closed in X.

Theorem 1.12. Let (Y, dY ) be a subspace of a metric space (X, d) and A

a subset of Y . Then

(i) x ∈ Y is a limit point of A in Y if and only if x is a limit point of A

in X;

(ii) the closure of A in Y , denoted by clA (Y ), is clX (A)∩Y , where clX (A)

is the closure of A in X. In other words, clY (A) = clX (A) ∩ Y .

Proof. (i) Let x ∈ Y be a limit point of A in Y . Then the every open

sphere S′
r (x) we have (S′

r (x) − {x}) ∩ A 6= φ.

For any given r > 0 we have

(Sr (x) − {x}) ∩ A = (S′
r (x) ∩ Y − {x}) ∩ A (since A ⊆ Y )

= (S′
r (x) − {x}) ∩ A 6= φ.

It follows that x is a limit point of A in X .

The converse can be established by retracting the above steps.

(ii) Since clX (A) is closed in X , by previous theorem, clX (A)∩Y is closed

in Y . Since clX (A) ∩ Y contains A and since clY (A) is the intersection of

all closed subsets of Y containing A, we must have

clY (A) ⊆ clX (A) ∩ Y.

Further, clY (A) is closed in Y , then clY (A) = F ∩ Y , where F is a

closed set in X . Since A ⊆ clY (A), then F is a closed set in X containing

A. Since clY (A) is the intersection of all closed sets containing A, we have

clY (A) ⊆ F.

Hence clY (A) ∩ Y ⊆ F ∩ Y = clY (A). �
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Chapter 2

Completeness

2.1 Introduction

The concept of a sequence, as studied in real analysis, can be extended

without any difficulty to a general metric space, and we shall do so have.

We shall also discuss the convergence of a sequence in a metric space.

2.2 Convergent Sequences

Definition 2.1. A sequence s in a set X is a mapping from the set of all

natural numbers N into X . The image under a sequence s of a natural

number n will be denoted by xn and will be referred as nth term of the

sequence s.

Definition 2.2. Let (X, d) be a metric space. A sequence of {xn} of points

of X is said to be convergent if there is a point x ∈ X such that for each

ε > 0, these exists a positive integer N such that

d(xn, x) < ε for all n > N.

The point x ∈ X is called the of the sequence {xn}.
A sequence which is not convergent is said to be divergent.

Since d(xn, x) < ε is equivalent to xn ∈ Sε(x), the definition of conver-

gent sequence can be restated as follows:

A sequence {xn} in a metric space X converges to a point x ∈ X if and

only if for each ε > 0, there exists a positive integer N such that

xn ∈ Sε(x) for all n > N.

31
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More preciously, a sequence {xn} in a metric space X converges to a

point x ∈ X if the sequence {d(xn, x)} of real numbers converges to 0 as

n → ∞.

We use the following symbols to write a convergent sequence.

xn → x or lim
n→∞

xn = x

and we express it by saying that xn approaches x or that xn converges to

x.

Theorem 2.1. A sequence in a metric space cannot converge to more than

one limit point. In other words, in a metric space, every convergent se-

quence has a unique limit.

Proof. Let (X, d) be a metric space and {xn} be a convergent sequence

in X . Suppose to the contrary that {xn} converges to two distinct points

x and y. Then, for each ε > 0, there exist positive integers N1 and N2 such

that

d(xn, x) <
ε

2
for all n > N1

and

d(xn, y) <
ε

2
for all n > N2.

By triangle inequality, we have

d(x, y) ≤ d(xn, x) + d(xn, y)

<
ε

2
+

ε

2
for all n > N = max {N1, N2} .

It follows that x = y. Hence the limit is unique. �

Theorem 2.2. Let (X, d) be a metric space and A be a subset of X. Then

(i) A point x ∈ X is a limit point of A if there exists a sequence {xn} of

points of A, none of which equals x, such that {xn} converges to x.

(ii) The set A is closed if and only if every convergent sequence of points

of A has its limit in A.

Proof. (i) Let x ∈ X be a limit point of A. Construct a sequence {xn}
by recursion as follows:

Since x ∈ X is a limit point of A, we have (S1(x) − {x}) ∩ A 6= ∅. So,

we can take x1 ∈ (S1(x) − {x})∩A. Likewise the point x1, x2, . . . , xn have

been chosen such that

xi ∈
(
S1/i(x) − {x}

)
∩ A, for i = 1, 2, . . . , n.
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Still
(

S 1
n+1

(x) − {x}
)

∩ A 6= ∅, we can always choose xn+1 ∈
(

S 1
n+1

(x) − {x}
)

∩A. Replace this process infinitely many times. Thus, the

sequence {xn} has been constructed by recursion, all the points of which

are in A and name of which equals x.

Now, Let ε > 0 be given and let N be a positive integer such that

N > 1
ε . Then

xn ∈ S 1
n
(x) ⊂ Sε(x), for all n > N.

Here {xn} converge to x.

Conversely, assume that there is a sequence {xn} of point of A, none of

which equals x, such that {xn} converges to x. Then for every ε > 0, there

exists a positive integer N such that

xn ∈ Sε(x), for all n > N.

Therefor (Sε(x) − {x}) ∩ A 6= ∅ which implies that x is a limit point of A.

(ii) Suppose that A is closed and {xn} is a sequence of points of A which

converges to a point x (say) in X . Then we have to show that x ∈ A.

If the range of the sequence {xn} is infinite, then it follows that x is a

limit point of this set. Since A is closed, we have x ∈ A.

If, on the other hand, the range of the sequence {xn} is finite, then

xn = x for all n ≥ N , since {xn} is a convergent sequence. Since each term

of the sequence belongs to A, we have x ∈ A.

Conversely, assume that each convergent sequence of points of A con-

verges to a point of A. We shall show A is closed by showing that it contains

all its limits points.

Let x be a limit point of A. Then by part (i), there is a sequence {xn}
of points of A, none of which equals x, such that xn → x. By hypothesis

x ∈ A. Hence A is closed. �

Problem 2.1. Show that the limit of a convergent sequence of distinct

points in a metric space is a limit of the range of the sequence.

Proof. Let {xn} be a sequence in a metric space such that xn → x and

let A be the range of the sequence {xn}. Then we have to show that x is

a limit point of A.

Suppose that x is not a limit point of A. Then there exists an open

sphere Sε(x) such that

(Sε(x) − {x}) ∩ A = ∅,
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that is, Sε(x) contains no point of A other that x. Since x is a limit point

of the sequence, for each ε > 0, there exists a positive integer N such that

d(xn, x) < ε or xn ∈ Sε(x), ∀n > N

which is a contradiction. Hence the result is proved. �

Definition 2.3. Let (x, d) be a metric space. A sequence {xn} in X is

said to be a Cauchy sequence if for each ε > 0, there exist a positive integer

N such that

d(xn, xm) < ε for all n, m > N.

Theorem 2.3. Every convergent sequence in a metric space is a Cauchy

sequence.

Proof. Let (X, d) be a metric space and {xn} be a sequence in X such

that xn → x as x → ∞. Then for each ε > 0, there exist a positive integer

N such that

d(xn, x) <
ε

2
, for all n > N.

By triangle inequality

d(xm, xn) ≤ d(xm, x) + d(xn, x)

<
ε

2
+

ε

2
= ε for all n, m > N.

Hence {xn} is a Cauchy Sequence. �

Remark 2.1. Every Cauchy sequence need not be convergent.

Example 2.1. 1. Consider the sequence {xn} is the usual metric space Q,

where

x1 = 0.1

x2 = 0.101

x3 = 0.101001

x3 = 0.1010010001

. . . . . . . . . . . . . . . . . . . . .

It is easy to verify that {xn} is a Cauchy sequence which does not converge

in Q.
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2. Let X = (0, 1] be a metric space with the usual metric and {xn}, where

xn =
1

n
, be a sequence in X . Then {xn} is a Cauchy sequence since for

each ε > 0, we have

d(xm, xn) =

∣
∣
∣
∣

1

m
− 1

n

∣
∣
∣
∣
< ε, for all m, n >

1

ε
.

On other hand, xn → 0 /∈ X .

Remark 2.2. In above Example 2, if we take X = [0, 1], then the sequence
{

1
2 , 1

3 , 1
4 , · · ·

}
is Cauchy as well convergent.

Theorem 2.4. Let (X, d) be a metric space and let {xn} be a convergent

sequence in X such that xn → x as n → ∞. If {xnk
} is any subsequence

of {xn}, then xnk
→ x as k → ∞.

Proof. Since every convergent sequence is Cauchy, we have

d(xnk
, x) ≤ d(xnk

, xn) + d(xn, x)

<
ε

2
+

ε

2
, for all n, nk > N.

Hence xnk
→ x as k → ∞. �

Remark 2.3. If a subsequence of a sequence in a metric space (X, d) is

convergent, then the sequence itself need not be convergent.

Example 2.2. Consider the sequence {xn}, where xn = (−1)n, in R with

used metric. Let {x2n} be a subsequence of the sequence {xn} given by

x2n = 1, for all n,

such that x2n → 1 as n → ∞. But {xn} is not a convergent sequence.

Theorem 2.5. Let {xn} be a Cauchy sequence in a metric space (X, d).

Then {xn} is convergent if and only if it has a convergent subsequence.

Proof. Let{xnk
} be a convergent subsequence of the sequence {xn}.

Suppose that xnk
→ x as k → ∞. Then for each ε > 0, there exists a

positive integer N such that

d(xnk
, x) <

ε

2
, for all nk > N.

Since {xn} is a Cauchy sequence, we have

d(xnk
, xn) <

ε

2
, for all n, nk > N.
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By triangle inequality, we have

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x)

<
ε

2
+

ε

2
= ε, for all n > N.

Hence {xn} is convergent.

The converse part follows from Theorem 3.2.4. �

Problem 2.2. Prove that Cauchy sequence is a discrete metric space is

convergent.

Proof. Let (X, d) be a discrete metric space and let {xn} be a Cauchy

sequence in X . Recall that d is defined by

d(x, y) =

{
0 if x = y

1 if x 6= y.

Let ε =
1

2
. There, since {xn} is a Cauchy sequence, there exist a positive

integer N such that

d(xn, xm) <
1

2
, for all n, m > N.

From the definition of d, we have xn = xm for all n, m > N . In other

words, {xn} is of the form {x1, x2, . . . , xN , x, x, . . .}, that is, constant form

some term on. Hence xn → x as n → ∞. �

Problem 2.3. Let (X, d) be a metric space. If {xn} and {yn} be sequences

in X such that xn → x and yn → y, then prove that d(xn, yn) → d(x, y).

Proof. Since xn → x and yn → y, for each ε > 0, there exist positive

integers N1 and N2 such that

d(xn, x) <
ε

2
, for all n > N1

and

d(xm, x) <
ε

2
, for all m > N2.

Now, if N = max{N1, N2}, then for all n, m > N ,

|d(xn, yn) − d(x, y)| ≤ |d(xn, yn) − d(xn, y)| + |d(xn, y) − d(x, y)|
≤ d(yn, y) + d(xn, x)

<
ε

2
+

ε

2
= ε.

Hence d(xn, yn) → d(x, y). �
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Problem 2.4. Let d and d∗ be two metrics on the same underlying set X

and there exist two real numbers K1, K2 > 0 such that

K1d(x, y) ≤ d∗(x, y) ≤ K2d(x, y), for all x, y ∈ X.

Prove that the Cauchy sequence in (X, d) and (X, d∗) are the same.

Problem 2.5. Let {xn} be a Cauchy sequence in a metric space (X, d)

and let {xnk
} be a subsequence of {xn}. Show that lim

n→∞
d(xn, xnk

) = 0.

Proof. Let ε > 0. Since {xn} is a Cauchy sequence in X , there exists a

positive integer N such that

d(xn, xm) < ε, for all n, m > N − 1.

Now nN ≥ N > N − 1 and therefore

d(xN , xnN
) < ε.

In other words lim
n→∞

d(xn, xnk
) = 0. �

Problem 2.6. Let {xn} and {yn} be sequences in a metric space (X, d)

such that {yn} is a Cauchy and d(xn, yn) → 0 as n → ∞. Then prove that

(i) {xn} is a Cauchy sequence in X;

(ii) {xn} Converges to, say, x ∈ X if and only if {yn} Converges to x.

Proof. (i) Let ε > 0. Since {yn} is a Cauchy sequence, there exists a

positive integer N1 such that

d(ym, yn) <
ε

3
, for all m, n > N1.

By hypothesis, d(xn, yn) → 0 as n → ∞, hence there exists a positive

integer N2 such that
1

N2
<

ε

3
and

d(xn, yn) <
ε

3
, for all n > N2.

By triangle inequality, we have

d(xm, xn) ≤ d(xm, ym) + d(ym, yn) + d(yn, xn).

Hence for all n, m > N2, we have

d(xm, xn) <
ε

3
+ d(ym, yn) +

ε

3
.

Let N0 = max{N1, N2}. Then for all n, m > N0, we have

d(xm, xn) <
ε

3
+

ε

3
+

ε

3
= ε.
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Thus {xn} is a Cauchy sequence.

(ii) By triangle inequality, we have

d(yn, x) ≤ d(yn, xn) + d(xn, x)

and hence

lim
n→∞

d(yn, x) ≤ lim
n→∞

d(yn, xn) + lim
n→∞

d(xn, x).

But lim
n→∞

d(yn, xn) = 0 and if lim
n→∞

d(xn, x) = 0, we have lim
n→∞

d(yn, x) =

0 ⇒ yn → x as n → ∞. �

Problem 2.7. Let {xn} and {yn} be Cauchy sequences in a metric space

(X, d). Then prove that {d(xn, yn)} in a convergent sequence.

Problem 2.8. Let (X, d) be a metric space and let d∗ be the metric on X

defined by

d∗(x, y) = min{1, d(x, y)}.
Show that {xn} is a Cauchy sequence in (X, d) if and only if it is a Cauchy

sequence in (x, d∗).

2.3 Complete Metric Spaces

Definition 2.4. A metric space (x, d) is said to be if every Cauchy sequence

in X converges to a point in X .

Remark 2.4. In view of Theorem 3.2.5, a metric space (X, d) is complete

if and only if every Cauchy sequence in X has a convergent subsequence.

Example 2.3. 1. The usual metric spaces R and C are complete.

2. The set of integer I with usual metric is a complete metric space.

Let {xn} be a Cauchy sequence of integers, that is, each term of the

sequence belongs to I = {. . . ,−2,−1, 0, 1, 2, . . .}. The sequence must be of

the form {x1, x2, x3, . . . , xn, x, x, x, . . .}. For if we choose ε = 1
2 , then

xn, xm ∈ I and |xn − xm| <
1

2
implies xn = xm

Hence the sequence {x1, x2, . . . , xn, x, x, x, . . .} will converge to x.

3. Let Rn be an Euclidean space with the metric

d(x, y) =

(
n∑

i=1

(xi − yi)
2

) 1
2
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for all x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn, is a complete

metric space.

Let {xm}
be a Cauchy sequence in Rn, where xm =

(

α
(m)
1 , α

(m)
2 , . . . , αm

n

)

that is,

x1 =
(

α
(1)
1 , α

(2)
2 , . . . , α

(1)
n

)

, x2 =
(

α
(2)
1 , α

(2)
2 , . . . , α

(2)
n

)

. Then for every

ε > 0, there exists a positive integer N such that

d(xm, xp) =

[
n∑

i=1

(

α
(m)
i − α

(p)
i

)2
] 1

2

< ε, for all p, m > N (∗)

On squaring both the sides, we get

n∑

i=1

(

α
(m)
i − α

(p)
i

)2

< ε2 ⇒
(

α
(m)
i − α

(p)
i

)2

< ε2 ⇒
∣
∣
∣α

(m)
i − α

(p)
i

∣
∣
∣ < ε

for all m, p > N, (i = 1, 2, . . . , n).

It follows that for each fixed i (1 ≤ i ≤ n), the sequence {α(m)
i }m

is a Cauchy sequence in the usual metric space R. Since R Complete,

it converges to some point in R. Let α
(m)
i → αi as m → ∞ for each

i = 1, 2, . . . , n, that is,αm
(1) → α1, α

m
(2) → α2, α

m
(n) → αn. Then for each

i = 1, 2, . . . , n,
∣
∣
∣α

(m)
i − αi

∣
∣
∣→ 0 as m → ∞. Let x = (α1, α2, . . . , αn), then

clearly x ∈ Rn. Hence

d(xm, x) =

[
n∑

i=0

(

α
(m)
i − αi

)2
] 1

2

→ 0, as m → ∞.

Thus xm → x as m → ∞ and therefore {xm} is a convergent sequence.

Therefore Rn is complete.

4. The unitary space C is a complete metric space (Verify).

5. By Exercise 1, every Cauchy sequence is convergent is a discrete metric

space and hence every discrete metric space is complete.

Problem 2.9. Prove or disprove that Rn is a complete metric space

with respect to the following metrics: For all x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn) ∈ Rm;

(i) d1(x, y) =
n∑

i=1

|xi − yi|;
(ii) d∞(x, y) = max

1≤i≤n
{|xi − yi|}.
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Example 2.4. The space `p (1 ≤ p < ∞) of all sequences {αi} of real or

complex numbers such that
∞∑

n=1
|α|p < ∞ with the metric

dp(x, y) =

(
∞∑

i=1

|αi − βi|p
) 1

p

, for all x, y ∈ `p

is a complete metric space.

Let {xn} be a Cauchy sequence in `p, where xm = {α(m)
i }i such that

∞∑

n=1
|α(m)

i |p < ∞, (m = 1, 2, . . .). Then for each ε > 0, there exist a positive

integer N such that

dp(xm, xn) =

(
∞∑

i=1

∣
∣
∣α

(m)
i − α

(n)
i

∣
∣
∣

p
) 1

p

< ε, for all m, n > N (∗)

and thus
∣
∣
∣α

(m)
i − α

(n)
i

∣
∣
∣ < ε, for all m, n > N, (i = 1, 2, . . .).

This shows that for each fixed i (1 ≤ i < ∞) the sequence {α(m)
i }m is a

Cauchy sequence in K (R or C). Since K is complete, it converges in K.

Let α
(m)
i → αi as m → ∞. Using these limits, we define x = (α1, α2, . . .)

and show that x ∈ `p and and xm → x.

From (*), we get

k∑

i=1

∣
∣
∣α

(m)
i − α

(n)
i

∣
∣
∣

p

< εp, for all m, n > N (k = 1, 2, . . .).

Letting n → ∞, we obtain

k∑

i=1

∣
∣
∣α

(m)
i − αi

∣
∣
∣

p

< εp, for all m > N (k = 1, 2, . . .)

which, on letting k → ∞, gives

k∑

i=1

∣
∣
∣α

(m)
i − αi

∣
∣
∣

p

< εp, for all m > N. (∗∗)

This shows that

xm − x =
{

α
(m)
i − αi

}

∈ `p.
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Since xm ∈ `p, it follows by means of Minkowski inequality1

x = xm + (x − xm) ∈ `p.

Thus x ∈ `p. Furthermore, from (**), we obtain

dp(xm) < ε, for all m > N

which verifies that xm → x in `p. Hence `p (1 ≤ p < ∞) is a complete

metric space.

Example 2.5. The sequence space `∞ =

{

{αi} ⊆ K : sup
1≤i<∞

|αi| < ∞
}

,

with the metric d(x, y) = sup
1≤i<∞

|αi − βi|, where x = {αi}, y = {βi}, is a

complete metric space.

Let {xm} be a Cauchy sequence in `∞, where xm = {α(m)
i }i such that

sup
1≤i<∞

∣
∣
∣α

(m)
i

∣
∣
∣

< ∞, (m = 1, 2, . . .). Then for each ε > 0, there exists a positive integer N

such that

d(xm, xn) = sup
1≤i<∞

∣
∣
∣α

(m)
i − α

(n)
i

∣
∣
∣ < ε, for all m, n > N

and thus ∣
∣
∣α

(m)
i − α

(n)
i

∣
∣
∣ < ε, for all m, n > N, (i = 1, 2, . . .). (∗)

This shows that for each fixed i (1 ≤ i < ∞), the sequence {α(m)
i }m

is a Cauchy sequence in K. Since K is complete, it converges in K. Let

α
(m)
i → αi as m → ∞. Using these limits, we define x = (α1, α2, . . .) and

show that x ∈ `∞ and xm → x.

Letting n → ∞ in (*), we get
∣
∣
∣α

(m)
i − αi

∣
∣
∣ < ε, for all m > N (i = 1, 2, . . .). (∗∗)

Since xm = {α(m)
i }i ∈ `∞, there is a real number km such that

∣
∣
∣α

(m)
i

∣
∣
∣ ≤ km

for all i. Therefore,

|αi| =
∣
∣
∣αi − α

(m)
i + α

(m)
i

∣
∣
∣

≤
∣
∣
∣α

(m)
i − αi

∣
∣
∣+ |αm

i |
≤ ε + km, for all m > N (i = 1, 2, . . .).

1Minkowski’s Inequality: Let 1 ≤ p < ∞. If (x1, . . .), (y1, . . .) ∈ `p, that is,
∞∑

i=1

|xi|
p < ∞ and

∞∑

i=1

|yi|
p < ∞, then

(
∞∑

i=1

|xi + yi|
p

) 1
p

≤

(
∞∑

i=1

|xi|
p

) 1
p

+

(
∞∑

i=1

|yi|
p

) 1
p

.
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This inequality being true for each i and the right hand side being inde-

pendent of i, it follows that {αi} is a bounded sequence of numbers. This

implies that x = {αi} ∈ `∞.

Furthermore, from (**), we obtain

d(xm, x) = sup
1≤i<∞

∣
∣
∣α

(m)
i − αi

∣
∣
∣ < ε, for all m > N.

This Shows that xm → x in `∞. Hence `∞ is a complete metric space.

Example 2.6. The space C[a, b] of all continuous real valued functions

defined on [a, b] with the metric

d∞(f, g) = max
t∈[a,b]

|f(t) − g(t)|

is a complete metric space.

Let {fm} be a Cauchy sequence in C[a, b]. Then for each ε > 0, there

exists a positive integer N such that

d∞(fm, fn) = max
t∈[a,b]

|fm(t) − fn(t)| < ε, for all m, n > N (∗)

Therefore, for any fixed t0 ∈ [a, b], we get

|fm(t0) − fn(t0)| < ε, for all m, n > N.

This shows that {fm(t0)} is a Cauchy sequence in R. But since R is com-

plete, this sequence converges. Let fm(t0) → f(t0) as m → ∞. In this

way, we can associate to each t ∈ [a, b] a unique real number f(t). This

defines (pointwise) a function f on [a, b]. Now, we show that f ∈ C[a, b]

and fm → f .

From (*), we have

|fm(t) − fn(t)| < ε, for all m, n > N and for all t ∈ [a, b].

Letting n → ∞, we get

|fm(t) − f(t)| < ε, for all m > N and for all t ∈ [a, b]. (∗∗)
This verifies that the sequence {fm} of continuous functions converges uni-

formly to the function f on [a, b] and the hence limit function f is a con-

tinuous function on [a, b]. As such f ∈ C[a, b].

Also, from (**), we have

max
t∈[a,b]

|fm(t) − f(t)| < ε, for all m > N.

Thus d∞(fm, f) < ε, for all m > N and therefore fm → f as m → ∞.

Hence C[a, b] is a complete metric space.
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But the space C[a, b], with a = 0 and b = 1 is not a complete metric

space with respect to the metric

d1(f, g) =

∫ 1

0

|f(t) − g(t)|dt.

Let {fn} be a sequence in C[0, 1], where

fn(t) =







0, 0 ≤ t ≤ 1
2 − 1

2

nt − 1
2n + 1, 1

2 − 1
n < t ≤ 1

2

1, 1
2 < t ≤ 1.

We shall know that {fn} is a Cauchy sequence but does not converge in

(C[0, 1], d1).

Note that d1(fn, fm) <
1

n
+

1

m
< ε, for all n, m > N , where N is

a positive integer such that N > 2
ε . This shows that {fn} is a Cauchy

sequence.

t t

× ×

| || |

1 1

1
2

1
2

1
2 − 1

n
1
2 − 1

n

fn fn

fm

1
n

1
n

1
m

d1(fn, fm) represents the area of the triangle

Let, if possible, f ∈ C[0, 1] be such that d1(fn, f) → 0. But

d1(fn, f) =

∫ 1
2
− 1

n

0

|f(t)| dt +

∫ 1
2

1
2
− 1

n

|fn(t) − f(t)| dt +

∫ 1

1
2

|1 − f(t)| dt.

(∗ ∗ ∗)
Since the integrands are non-negative, so is the each integral on the right

hand side of (***). Consequently, we have

lim
n→∞

∫ 1
2
− 1

n

0

|f(t)|dt = 0

∫ 1

1
2

|1 − f(t)|dt = 0







⇒ f(t) =

{
0, if 0 ≤ t < 1

2

1, if 1
2 ≤ t ≤ 1.
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Therefore f is not continuous on [0, 1], that is, f /∈ C[0, 1]. Hence C[0, 1] is

not a complete metric space.

Example 2.7. The space Q with usual metric of absolute value is not

complete.

Example 2.8. The metric space (X, d), where X = (0, 1] and d is the usual

metric on X , is not complete.

Problem 2.10. Prove that [0, 1) as a subspace of the discrete metric space

R is complete.

Theorem 2.6. Let (Y, dY ) be a subspace of a metric space (X, d). If Y is

complete, then it is closed.

Proof. Suppose that Y is a complete subspace. To prove Y is closed, it

is sufficient to show that Y contains all its limit points.

Let x be a limit point of Y . Then by Theorem 3.2.3 “Let (x, d) be a

metric space and A ⊆ X . A point x ∈ X is a limit point of A if and only

if there is a sequence of distinct points of A which converges to x”, there

exist a sequence {xn} of distinct points of A which converges to x. Since

each convergent sequence is Cauchy, it is a Cauchy sequence. Also since

A is complete, the limit of this sequence, say x, must lie in A. Thus A is

closed. �

Theorem 2.7. Let (X, d) be a complete metric space and (Y, dy) a subspace

of (x, d). Then Y is complete if and only if it is closed.

Proof. If Y is a complete subspace of (X, d), then by theorem 3.3.1, it is

closed.

Conversely, assume that Y is a closed subspace of a complete metric

space X . Let {xn} be a Cauchy sequence of points of Y . Since X is

complete, this sequence converges to a point x belonging to X . By Theorem

3.2.2 (ii) “A ⊆ X is closed if and only if each convergent sequence of points

of A converges to a point of A”, and since A is closed, x ∈ A. Thus each

Cauchy sequence of point of A converges to a points of A. Hence A is

complete. �

Theorem 2.8 (Cantor’s Intersection Theorem). Let (X, d) be a

complete metric space and let {Fn} be a decreasing sequence (that is,

Fn+1 ⊆ Fn) of nonempty closed subsets of X such that δ(Fn) → 0 as

n → ∞. Then the intersection
∞⋂

x=1
Fn contains exactly one point.
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Proof. Construct a sequence {xn} in X by selecting a point xn ∈ Fn

for each n. Since the sets Fn are nested, that is, Fn+1 ⊆ Fn, we have

xn ∈ Fn ⊆ Fm, for all n > m. We claim that {xn} is a Cauchy sequence.

Let ε > 0 be given. Since δ(Fn) → 0, there exists a positive integer

N such that δ(Fn) < ε. Since {fn} is a decreasing sequence, we have

Fm, Fn ⊆ FN for all m, n ≥ N . Therefore, xn, xm ∈ FN for all n, m ≥ N

and thus, we have

d(xn, xm) ≤ δ(Fn) < ε, for all n, m ≥ N.

Hence {xn} is a Cauchy sequence. Since X is complete, there exists x ∈ X

such that x ∈ X such that xn → x. We claim that x ∈
∞⋂

n=1
Fn.

Let n be fixed. Then the subsequence {xn, xn+1, . . .} of {xn} is con-

tained is Fn and still converges to x, since every subsequence of a convergent

sequence is convergent. But Fn being a closed subspace of the complete

metric space (X, d), it is complete and so x ∈ Fn. This is true for each

n ∈ N. Hence x ∈
∞⋂

n=1
Fn, that is,

∞⋂

n=1
Fn 6= ∅.

Finally, to establish that x is the only point in the intersection
∞⋂

n=1
Fn,

let y ∈
∞⋂

n=1
Fn. Then x and y both are in Fn for each n. Therefore,

0 ≤ d(x, y) ≤ δ(Fn) → 0, as n → ∞.

Thus d(x, y) = 0 and hence x = y. �

Remark 2.5. The assertion in Theorem 3.3.3 may not be true if either of

the conditions

(a) each Fn is closed

(b) δ(Fn) → 0 as n → ∞

is dropped.

Example 2.9. Consider the usual metric space R which, of course, is com-

plete.

(a) Take Fn = [n,∞). Note that {Fn} is a sequence of nonempty closed

sets such that d(Fn) 6→ 0 as n → ∞ and that
∞⋂

n=1
Fn = ∅.

(b) Take Fn = (0, 1
n ]. Note that {Fn} is a decreasing sequence (that is,

Fn+1 ⊆ Fn) of nonempty set which are not closed, δ(Fn) → 0 as n → ∞
and

∞⋂

x=1
Fn = ∅.
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Now, we have the converse of Theorem 3.3.3.

Theorem 2.9. If in a metric space (X, d) every decreasing sequence {Fn}
of nonempty closed sets with δ(Fn) → 0 as n → 0 has exactly on one point

in its intersection, then (X, d) is complete.

Proof. Let {xn} be a Cauchy sequence in X . Let G1 = {x1, x2, . . .},
G2 = {x2, x3, . . .}, · · · , Gn = {xn, xn+1, . . .}.

Since {xn} is a Cauchy sequence, for a given ε > 0, there exists a

positive integer N such that

d(xm, xn) < ε, for all m, n ≥ N.

But m, n ≥ N , we have xm, xn ∈ Gn and therefore d(xm, xn) < ε, which

implies that δ(Gn) < ε. For 6= N , we have Gn ⊆ GN and thus δ(Gn) ≤
δ(GN ) < ε. Therefore, δ(Gn) → 0 as n → ∞.

Since δ(Gn) = δ(Gn), we have δ(Gn) → 0 as n → ∞. Taking Fn = Gn,

then {Fn} is a decreasing sequence of nonempty closed sets with δ(Fn) → 0

as n → ∞. Then by hypothesis, there exist an x ∈ X such that x ∈
∞⋂

n=1
.

Therefore, d(x, xn) ≤ δ(Fn) for all n and so d(x, xn) ≤ δ(Fn) → 0 as

n → ∞. Hence xn → x in X . Thus, (X, d) is complete. �
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Chapter 3

Separable Spaces

3.1 Countability

Definition 3.1. Let (X, d) be a metric space and O be the family of all

open subset of X . A subfamily B of open subsets of X , that B ⊆ O, is said

to be a base or basis for O if every open set G ∈ O is the union of members

of B.

Before giving the examples of a base for a family of open sets, we mention

the following characterization of a base.

Theorem 3.1. Let (X, d) be a metric space and let O be the family of all

open subset of X. A subclass B of O, that is, B ⊆ O, is a base for O if

and only if for any point x belonging to an open set G, there exists Bx ∈ B
such that x ∈ Bx ⊆ G.

Proof. Let B be a base for O and G be any open set in X , that is, G ∈ O.

Then by definition, G is the union of member of B. Let x ∈ G. Since G in

the union of members of B, there exists a set Bx in B such that x ∈ Bx ⊆ G.

Conversely, let G be any arbitrary open set. Then by hypothesis, for

any point x ∈ G, there exists Bx in B such that x ∈ Bx ⊆ G.

Clearly, G =
⋃{Bx : x ∈ G and each Bx ∈ B}. Then every open set is

the union of members of B. �

Example 3.1. 1. Let (X, d) be a discrete metric space. Then the collection

B = {{x} : x ∈ X} forms a base, since every subset of a discrete metric

space is open.

2. The collection of all open intervals forms a base for the family of all open

sets in the usual metric space R.

47
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3. The collection of all open spheres forms a base for the family of all open

sets in a metric space (X, d).

Definition 3.2. A metric space (X, d) is said to be a first countable space

(or first axiom space) if for every point x ∈ X , there exists a countable

family {Bn(x)} of open sets containing x such that every open set G con-

taining x also contains a member of {Bn(x)}, that is, Bn(x) ⊆ G for some

n.

Example 3.2. The usual metric space R is a first countable space. Indeed,

we may take Bn(x) =
(
x − 1

n , x + 1
n

)
for each x ∈ R and n ∈ N.

Theorem 3.2. Every metric space (X, d) is a first countable space.

Proof. Let x ∈ X and x ∈ N. Let Bn(x) = S 1
n
(x). Then {Bn(x)} =

{

B1(x), B 1
2
(x), B 1

3
(x), . . .

}

be a countable collection of open subsets of X

each of which contains x. Let G be an open set containing x. Then there

exists Bε(x) such that Bε(x) ⊆ G for same ε > 0. In this case, Bn(x) ⊆ G

for each n > 1
ε and hence X in a first countable space. �

Definition 3.3. A metric space (X, d) is said to be a second countable

space (a second axiom space) if there exists a countable base for the family

of all open subset of X .

Example 3.3. The usual metric space R is a second countable space. In

fact, the collection of all open intervals (a, b) with a and b as rational point

forms a base for the family of all open subset of R.

Remark 3.1. Every second constable metric space is first countable but

converse in not true.

Example 3.4. Let (X, d) be a discrete metric space with X is an uncount-

able set. Then, X is a first countable set not second countable.

3.2 Dense sets and Nowhere Dense sets

Definition 3.4. Let (X, d) be a metric space and A a subset of X . Then

A is said to be

(i) dense (or everywhere dense) in X if A = X ;

(ii) nowhere dense in X if (A)◦ = ∅.
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Example 3.5. (i) The set of rational numbers Q is dense in the usual

metric space R, since Q = R.

(ii) In the usual metric space R,

(a) any singleton set,

(b) any finite set,

(c) The sets N and Z (N = N ∪ N′ = N ∪ ∅ = N, N◦ = ∅) are nowhere

dense in R.

Theorem 3.3. Let (X, d) be a metric space and A a subset of X. Then A

is nowhere dense in X if and only if X − A is dense in X.

Proof. Since X − A = X − A◦, we have A◦ = X − X − A. Replacing

A by A, we get (A)◦ = X − (X − A). Therefore, (A)◦ = ∅ if and only if

X = (X − A). �

Corollary 3.1. Let (X, d) be a metric space and A a closed subset of X.

Then A is nowhere dense in X if and only if X − A is dense in X.

Problem 3.1. Let (X, d) be a matrix space and A a subset of X. Then

prove that the following statements are equivalent:

(i) A is dense in X.

(ii) The only closed superset of A is X.

(iii) The only open set disjoint from A is ∅.
(iv) A intersects every nonempty open set.

(v) A intersects every open sphere.

Problem 3.2. Let (X, d) be a metric space and A a subset of X. Then

prove that the following statements are equivalent

(i) A is nowhere dense in X.

(ii) A does not contain any nonempty open set.

(iii) Every nonempty open set has a nonempty open subset disjoint from A.

(iv) Every nonempty open set contains a nonempty open subset disjoint from

A.

(v) Every nonempty open set contains an open sphere disjoint from A.

Problem 3.3. Let A be a metric space and A an open subset of X. Then

prove that A is dense in x if and only if X − A is nowhere dense in X.

Problem 3.4. Prove that a finite union of nowhere dense sets in a metric

space is a nowhere dense set.
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Problem 3.5. Give an example to show that a countable (infinite) union

of nowhere dense sets in a metric space (X, d) need not be a nowhere dense

set in (X, d).
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Chapter 4

Continuous Functions

4.1 Definition and Characterizations

Definition 4.1. Let (X, d) and (Y, ρ) be metric spaces. A function f :

X → Y is said to be continuous at a point x0 ∈ X if for every ε > 0, there

exists a δ > 0 such that

d(x, x0) < δ implies ρ (f(x), f(x0)) < ε,

that is,

x ∈ Sδ(x0) implies f(x) ∈ Sε (f(x0)) .

In other words, f is continuous at a point x0 ∈ X if for every ε > 0, there

exists a δ > 0 such that

f (Sδ(x0)) ⊆ Sε (f(x0)) .

The function f is said to be continuous on X if it is continuous at every

point of X .

x0

x

f(x0)

f(x)

f
>

f
>δ ε

Sδ(x0)

Sε(f(x0))
Fig. 4.1 Continuous Function

51



July 7, 2008 17:20 World Scientific Book - 9in x 6in MS(QHA)

52 Metric Space

Example 4.1.

(i) Let (X, d) be a metric space. Then the identity function I : X → X is

continuous on X.

(ii) Let R be the set of all real numbers with the usual metric, then every

constant function is continuous.

(iii) Let (X, d) be a discrete metric space. Then every function f : X → Y

from X to a metric space Y is continuous on X.

Theorem 4.1. Let (X, d) and (Y, ρ) be metric spaces. A function f :

X → Y is continuous at a point x0 ∈ X if and only if for every sequence

{xn} ⊂ X, we have xn → x0 implies that f(xn) → f(xn).

Proof. Let f be continuous at a point x0 ∈ X . Then for a given ε > 0,

there exists a δ > 0 such that

d(x, x0) < δ implies ρ (f(x), f(x0)) < ε.

Let {xn} ⊂ X be a sequence in X such that xn → x0. Then there exists a

positive integer N such that

d(xn, x0) < δ for all n > N.

Hence for all n > N , we have

ρ (f(xn), f(x0)) < ε,

and therefore f(xn) → f(x0).

Conversely, assume that for every sequence {xn} in X such that xn →
x0, we have f(xn) → f(x0). Suppose that f is not continuous at x0. Then

there exists an ε > 0 such that for every δ > 0, there is an x 6= x0 satisfying

d(x, x0) < δ but ρ (f(x), f(x0)) ≥ ε.

In particular, for δ = 1
n there is an xn satisfying

d(xn, x0) <
1

n
but ρ (f(xn), f(x0)) ≥ ε.

Then clearly xn → x0 but {f(xn)} does not converge to f(x0). This con-

tradicts to our hypothesis that f(xn) → f(x0). Hence f is continuous at

x0. �

Theorem 4.2. Let (X, d) and (Y, ρ) be metric spaces. A function f : X →
Y is continuous on X if and only if for each x ∈ X and for every sequence

{xn} ∈ X, we have xn → x implies f(xn) → f(x).
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Theorem 4.3. Let (X, d) and (Y, ρ) be metric spaces. A function f : X →
Y is continuous on X if and only if f−1(G) open in X whenever G is open

in Y .

Proof. Assume that f is continuous on X and G is an open set in Y .

Then we shall prove that f−1(G) is open in X . If f−1(G) = ∅, then the

result is proved. So, we assume that f−1(G) 6= ∅. Let x ∈ f−1(G), then

f(x) ∈ G. Since G is open, Sε(f(x)) ⊆ G for some ε > 0. By the continuity

of f , there exists a δ > 0 such that

f (Sδ(x)) ⊆ Sε(f(x)),

and since Sε(f(x)) ⊆ G, it follows that f (Sδ(x)) ⊆ G and therefor Sδ(x) ⊆
f−1(G). Hence f−1(G) is open.

Conversely, assume that f−1(G) is open in X wherever G is open in

Y . Let x ∈ X be arbitrary and ε > 0 be given. Then f(x) ∈ Y and

Sε (f(x)) (= G, say) is a open set. Therefore, by assumption f−1 (Sε(f(x)))

is open and x ∈ f−1 (Sε(f(x))). Consequently, there exists a δ > 0 such

that Sδ(x) ⊆ f−1 (Sε(f(x))) and thus f (Sδ(x)) ⊆ Sε(f(x)). Hence f is

continuous at x. Since x ∈ X was an arbitrary, f is continuous on X . �

x f(x)

f
>

δ
ε

Sδ(x)

f−1(G)

Sε(f(x))

G

Space YSpace X

Fig. 4.2

Theorem 4.4. Let (X, d) and (Y, ρ) be metric spaces. A function f : X →
Y is continuous on X if and only if f−1(F ) is closed in X whenever F is

closed in Y .
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Proof. Let f be a continuous function and F be a closed in Y . Then

Y \ F is open in Y and therefore f−1(Y \ F ) is open in X . Since

f−1(F ) = X \ f−1(Y \ F )

and f−1(Y \ F ) is open, it follows that f−1(F ) is closed.

Conversely, assume that f−1(F ) is closed in X whenever F is closed in

Y . Then we shall show that f is continuous. Let G be an open subset of

Y . Then Y \G is closed in Y and by hypothesis f−1(Y \G) is closed in X .

Since

f−1(G) = X \ f−1(Y \ G)

and f−1(Y \G) is closed , we have f−1(G) is open. Hence f is continuous

on X . �

Remark 4.1. If f is a continuous function from a metric space (X, d) to

another metric space (Y, ρ). Then the image f(G) of an open set G in X

need not be open in Y and the image f(F ) of a closed set F in X need not

be closed in Y .

For example, consider the function f : R → R defined as f(x) = x2.

Thus, of course, f is continuous on R. Let G = (−1, 1) be an open set in

R but f(G) = [0, 1) is not open in R.

Consider another function f : [1, +∞) → R defined by f(x) = 1
x . Then,

f is continuous on [1, +∞). Let A = [1, +∞), then A is a closed subset of

R = (−∞, +∞) but f(A) = (0, 1] is not closed in R.

Theorem 4.5. Let (X, d) and (Y, ρ) be metric spaces. A function f : X →
Y is continuous if and only if f

(
A
)
⊆ f(A) for every subset A of X.

Proof. Let f be a continuous function. Then f−1
(

f(A)
)

is closed in X ,

since f(A) is closed in Y . Now we have

f(A) ⊆ f(A) ⇒ A ⊆ f−1
(

f(A)
)

⇒ A ⊆ f−1
(

f(A)
)

and thus A ⊆ f−1
(

f(A)
)

because f−1
(

f(A)
)

is closed. Hence f
(
A
)
⊆

f(A).

Conversely, let f
(
A
)
⊆ f(A) for every subset A of X . We shall prove

that f is continuous. Let F be any closed set in Y . Then F = F . Now, we

have

f
(

f−1(F )
)

⊆ f (f−1(F )) = F = F.
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Thus implies that f−1(F ) ⊆ f−1(F ). But f−1(F ) ⊆ f−1(F ), therefore

f−1(F ) = f−1(F ). Hence f−1(F ) is closed in X . Thus f is continuous on

X. �

Theorem 4.6. Let (X, d) and (Y, δ) be metric spaces and f : X → Y be a

function. The following statements are equivalent:

(a) f is continuous on X.

(b) For each x ∈ X and for every sequence {xn} in X such that xn →
x ⇒ f(xn) → f(x).

(c) f−1(G) is open in X wherever G is open in Y .

(d) f−1(F ) is closed in X wherever F is closed in Y .

(e) f(A) ⊆ f(A) for every subset A of X.

Problem 4.1. Prove that the function f : (X, d) → (Y, ρ) is continuous on

if and only if for every subset B of Y , f−1(B) ⊆ f−1
(
B
)
.

Proof. Let f be continuous and let A = f−1(B). Since f
(
A
)
⊆ f

(
A
)

(by Theorem 1.5), we have

f(A) ⊆ B ⇒ f(A) ⊆ B ⇒ f
(
A
)
⊆ B

Therefore,

A ⊆ f−1(B) ⇒ f−1(B) = f−1(B).

Conversely, let f−1(B) ⊆ f−1
(
B
)

for every subset B of Y . Let F be a

closed set in Y . Then F = F and by hypothesis, we have

f−1(F ) ⊆ f−1
(
F
)

= f−1(F ) because F = F.

But f−1(F ) ⊆ f−1(F ) and therefore f−1(F ) = f−1(F ). Thus f−1(F ) is

closed and hence f is continuous on X . �

Problem 4.2. Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be a

function. Prove that f is continuous as on X if and only if for every subset

B of Y , f−1(B◦) ⊆
(
f−1(B)

)◦
.

Proof. Suppose that f is a continuous function. Let B be any ar-

bitrary subset of Y . Then B◦ is open in Y and by continuity of f ,

f−1 (B◦) is open in X . Therefore,
(
f−1(B)

)◦
= f−1 (B◦). But B◦ ⊆

B ⇒ f−1 (B◦) ⊆ f−1(B) and therefore
[
f−1 (B◦)

]◦ ⊆
[
f−1(B)

]◦
. This

implies that f−1 (B◦) ⊆
[
f−1(B)

]◦
.

Conversely, let G be an open subset of Y . Then G◦ = G. By the

hypothesis
[
f−1(G)

]◦ ⊇ f−1 (G◦) = f−1(G) = f−1(G).
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But
[
f−1(G)

]◦ ⊆ f−1(G) = f−1(G), therefore f−1(G) =
[
f−1(G)

]◦
and

thus f−1(G) is open in X . Hence f is continuous on X . �

Theorem 4.7. Let (X, d), (Y,

rho) and (Z, σ) be metric spaces. Suppose that f : X → Y and g : Y → Z

are continuous functions. Then g ◦ f is continuous on X.

Proof. We know that g ◦ f : X → Z Let G be an open set in Z. Then

g−1(G) is open in Y ⇒ f−1
(
g−1(G)

)
is open in X

⇒
(
f−1 ◦ g−1

)
(G) is open in X ⇒ (g ◦ f)

−1
(G) is open in X

⇒ g ◦ f is continuous. �

4.2 Continuous Functions and Compact Spaces

Theorem 4.8. Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be a

continuous function. If A is a compact subset of X, then f(A) is compact

in Y .

Proof. Let F = {Gi}i ∈ Λ be an open cover of f(A). Then by Theorem

1.3, f−1(Gi) is open in X for each i ∈ Λ. Hence {A ∩ f−1(Gi)}i∈Λ from

an open cover of A. Since A is compact, there exists a finite set J =

{1, 2, . . . , n} of Λ such that

A =

n⋃

k=1

(
A ∩ f−1(Gk)

)
= A ∩

(
n⋃

k=1

f−1(Gx)

)

= A ∩ f−1

(
n⋃

k=1

Gk

)

.

Therefore, it follows that

f(A) ⊆
n⋃

k=1

Gk

and hence {G1, G2, . . . , Gn} is a finite subcover of F . Thus, f(A) is com-

pact. �

Corollary 4.1. Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be a

continuous function. If X is compact, then f(X) is bounded.

Proof. By above theorem f(X) is compact. Since every compact space

is sequentially compact and every sequentially compact space is totally

bounded, we have f(X) is totally bounded and hence it is bounded. �
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Theorem 4.9. Let (X, d) and (X, ρ) be metric spaces and f : X → Y be a

continuous function. If X is compact, then f(F ) is closed in Y whenever

F is closed in X.

Proof. Let F be a closed subset of X . Since every closed subset of a

compact set is compact, by Theorem 2.1, we have f(F ) is compact and

hence it is closed. �

Theorem 4.10. Let (X, d) and (Y, ρ) be metric spaces and f : X → Y

be a continuous function. If f is bijective and X is compact, then f−1 is

continuous on Y .

Proof. Since f is bijective, f−1 : Y → X exists and also bijective. Let F

be a closed set in X . Then
(
f−1

)−1
(F ) = f(F ) and by Theorem 2.2, f(F )

is closed in Y . Thus, the inverse image of closed set is closed and hence

f−1 is continuous. �

Remark 4.2. In Theorem 2.3, if X is not compact, then f−1 need not be

continuous. For example, consider and identity function I : (R, d) → (R,U)

from R with discrete metric to R with usual metric. Then I is continuous

but I−1 is not.

4.3 Continuous Functions and Connected Sets

Theorem 4.11. Let (X, d) and (Y, ρ) be metric spaces and let f : X → Y

be a continuous functions. If C is connected subset of X, then f(C) is

connected subset of Y .

Proof. Assume that f(C) is disconnected. Then f(C) = G ∪ H , where

G and H are nonempty, disjoint open sets subsets of Y such that f(C)∩G

and f(C) ∩ H are nonempty. Then

C ⊆ f−1 (G ∪ H) = f−1(G) ∪ f−1(H).

Since f is continuous, f−1(G) and f−1(H) are open in X . Moreover, C ∩
f−1(G) and C ∩ f−1(G) are nonempty and disjoint. It follows that C is

disconnected, which is a contradiction. Hence f(C) is connected. �

Theorem 4.12. Let (X, d) be a connected metric space and f : X → R be

a continuous function. Then f(X) is an interval.
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Proof. By theorem 3.1, f(X) is connected subset of R. Since “a subset

of R is connected if and only if it is an interval” (Theorem 2.2). We have

f(X) is an interval. �

Corollary 4.2. [Intermediate Value Theorem] Let f : R → R be a con-

tinuous function and a, b,∈ R with a < b and f(a) 6= f(b). If α is a real

numbers between f(a) and f(b) , then there exists a real number c, a ≤ c ≤ b

such that f(c) = α.

Corollary 4.3. A metric space (X, d) is disconnected if and only if there

exists a continuous function f : X → {0, 1} form X onto the discrete two

point space {0, 1}.

Proof. Let X be disconnected. Then X = A ∪ B, where A and B are

nonempty, disjoint, open subsets of X . Define f : X → {0, 1} by

f(x) =

{
0, x ∈ A

1, x ∈ B.

Then, clearly f is continuous form X onto {0, 1}.
Conversely, assume that there exists a continuous function f : X →

{0, 1} from X onto {0, 1}. Let X be connected. Then by Theorem 3.1,

f(X) = {0, 1} is connected, which is a contradiction. Hence X is discon-

nected. �

4.4 Uniform Continuity

Before giving the definition of uniform continuity, we examine the following

examples.

Consider a real-valued function f : [−1, 1] → R defined as f(x) = x2.

Let x, x0 be any points of [−1, 1]. Then

d (f(x), f(x0)) = |f(x) − f(x0)| =
∣
∣x2 − x2

0

∣
∣

= |x − x0| · |x + x0| < ε

whenever |x − x0| < 1
2ε = δ, where δ is independent of the choice of x and

x0.

Thus for any ε > 0, there exists a δ = 1
2ε such that for any x, x0 ∈

[−1, 1], we have

d (f(x), f(x0)) < ε whenever d(x, x0) < δ.
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Now, if we consider the same function f(x) = x2 defined on R, that is,

f : R → R such that f(x) = x2. Then for every real numbers x, x0, we have

d (f(x), f(x0)) =
∣
∣x2 − x2

0

∣
∣ = |x − x0| · |x + x0| < ε

whenever |x − x0| < ε
|x+x0|

= δ, where δ depends on ε and x0.

In this way, we see that δ may depend not only on ε but also on x0.

Uniform continuity is essentially continuity plus the added condition that

for each ε we can find a δ which works uniformly over the entire space, in

the sense that it does not depends on x0.

Definition 4.2. Let (X, d) and (Y, ρ) be metric spaces. A function f :

X → Y is said to be uniformly continuous if for each ε > 0, there exists a

δ > 0 (depends only on ε) such that for every x1, x2 ∈ X ,

d(x1, x2) < δ implies ρ (f(x1), f(x2)) < ε.

Remark 4.3. Every uniform continuous function is continuous but con-

verse need not be true in general. For example, in the first example men-

tioned above, δ is independent of the choice of x and x0, and therefore it is

uniformity continuous. But in the later example, δ depends on ε and x0,

and hence it is only continuous but not uniformly continuous.

Theorem 4.13. Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be

a continuous function. If X is compact then f is uniformly continuous.

Proof. Let ε > 0 and x ∈ X be arbitrary. Consider the image f(x) of

x and the open sphere Sε(f(x)). Since f is continuous, f−1 (Sε(f(x))) is

an open set in X . Consider the family F =
{
f−1 (Sε(f(x))) : x ∈ X

}
of

these open sets in X . Then clearly F is an open cover of X . Since X is

compact, it is sequentially compact and therefore, by Theorem .... there

exists a Lebesgue number δ > 0 for F . Thus every open sphere of diameter

less that δ will contain in at least one member of F and, consequently, we

have

Sδ/2(x) ⊆ f−1 (Sε(f(x))) ⇒ f
(
Sδ/2(x)

)
⊆ Sε(f(x)).

Hence for each ε > 0, there exists a δ̃ > 0 (independent of x) such that

d(x, y) <
δ

2
= δ̃ ⇒ ρ (f(x), f(y)) < ε.

Hence f is uniformly continuous. �

Theorem 4.14. Composition of two uniformly continuous functions is a

uniformly continuous function.
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Theorem 4.15. Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be

an uniformly continuous function. If {xn} is a Cauchy sequence in X, then

{f(xn)} is also a Cauchy sequence in Y .

Proof. Since f is uniformly continuous, for each ε > 0, there exists a

δ > 0 (only depends on ε) such that for all x1, x2 ∈ X ,

d(x1, x2) < δ implies ρ (f(x1)), f(x2)) < ε.

In particular, we have

d(xn, xm) < δ implies ρ (f(xn), f(xm)) < ε (∗)
Since {xn} is a Cauchy sequence in X , for a given δ > 0, there exists a

positive integer N such that

d(xn, xm) < δ for all n, m ≥ N (∗∗)
(∗) and (∗∗) imply that

ρ (f(xn), f(xm)) < ε for all n, m ≥ N.

Hence {f(xn)} is a cauchy sequence in Y . �

Problem 4.3. Give an example to show that the above theorem is not true

if f is only continuous function.

Problem 4.4. Let (X, d) be a metric space and A be a subset of X. Prove

that the function f : X → R defined by

f(x) = d(x, A) for all x ∈ X

is uniformly continuous.

Proof. By the triangular inequality

d(x, a) ≤ d(x, y) + d(y, a) for all a ∈ A, x ∈ X.

By taking infimum, we obtain

inf
a∈A

d(x, a) ≤ d(x, y) + inf
a∈A

d(y, a).

Therefore

d(x, A) ≤ d(x, y) + d(y, A)

and so

d(x, A) − d(y, A) ≤ d(x, y) for all x, y ∈ X.
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By interchanging x and y, we obtain

d(y, A) − d(x, A) ≤ d(y, x) = d(x, y).

Thus

|d(x, A) − d(y, A)| ≤ d(x, y).

Therefore, for a given ε > 0, choosing a δ such that 0 < δ < ε, we have

|f(x) − f(y)| = |d(x, A) − d(y, A)| ≤ d(x, y) < δ ≤ ε,

that is,

|f(x) − f(y)| < ε whereever d(x, y) < δ

Hence f is uniformly continuous on X . �


