Statistical Significance

Is it not enough? So why some journals enforce requirements like practical significance?

by

Dr. Mohammad H. Omar
Department of Mathematical Sciences

Dec 19, 2006

Presented at Statistic Research (STAR) colloquium,
King Fahd University of Petroleum & Minerals,
Dhahran, Saudi Arabia.

SEMINAR OUTLINE

- Mean differences
- What is statistical significant difference?
- How do we show statistical significance?
- Is statistical significance enough to meet some journal publication requirements?
- APA statements for journals following the APA submission format
- List of journals requiring effect sizes
- What is practical significance?
- Jacob Cohen’s practical significance index
- Ranges of importance
- Is it easy to calculate these indices?
- An Example of practical significance index in journal articles
Mean differences

- Often time in research, we want to compare treatment groups.
- We want to compare a control group with another group taking an experimental treatment, usually we call this a treatment group.
- Let’s say we found that the sample mean for Treatment group > control group
- Often we express this as mean difference: Treatment – Control > 0

Is this difference good enough?

Mean Difference

Is this difference good enough?

- Even if we find a difference, we don’t know if there is a real mean difference in the population.
 - That is, we don’t even have an idea about how likely is it that the population means are different.
 - Note that we never know the population.
- We don’t know how likely until we take our random sampling chance error into account.
 - Thus, we need to do some statistical work like hypothesis testing for mean difference.
What is statistically significant mean difference?

Sample mean difference is difference between the sample means. Statistically significant mean difference is large enough mean difference that cannot be due to chance error alone.

How do we show statistical significance?

- We have to take into consideration the sampling error for these mean differences.
- Also, take the standard error of the sample mean differences into account.
- Often, these techniques are covered in statistics textbooks and courses under the topic of hypothesis testing.
Hypothesis Tests for Two Population Means

Two Population Means, Independent Samples

Lower tail test:

- $H_0: \mu_1 \geq \mu_2$
- $H_A: \mu_1 < \mu_2$
 - i.e., $H_0: \mu_1 - \mu_2 = 0$
 - $H_A: \mu_1 - \mu_2 < 0$

Upper tail test:

- $H_0: \mu_1 \leq \mu_2$
- $H_A: \mu_1 > \mu_2$
 - i.e., $H_0: \mu_1 - \mu_2 = 0$
 - $H_A: \mu_1 - \mu_2 > 0$

Two-tailed test:

- $H_0: \mu_1 = \mu_2$
- $H_A: \mu_1 \neq \mu_2$
 - i.e., $H_0: \mu_1 - \mu_2 = 0$
 - $H_A: \mu_1 - \mu_2 \neq 0$

Hypothesis tests for $\mu_1 - \mu_2$

- **Population means, independent samples**

 - σ_1 and σ_2 known
 - Use a z test statistic

 - σ_1 and σ_2 unknown, n_1 and $n_2 \geq 30$
 - Use s to estimate unknown σ, approximate with a z test statistic

 - σ_1 and σ_2 unknown, n_1 or $n_2 < 30$
 - Use s to estimate unknown σ, use a t test statistic and pooled standard deviation
Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? A financial analyst for a brokerage firm collected the following data:

<table>
<thead>
<tr>
<th></th>
<th>NYSE</th>
<th>NASDAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>Sample mean</td>
<td>3.27</td>
<td>2.53</td>
</tr>
<tr>
<td>Sample std dev</td>
<td>1.30</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Assuming equal variances, is there a difference in average yield ($\alpha = 0.05$)?

Solution

H_0: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

H_A: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$\alpha = 0.05$

$df = 21 + 25 - 2 = 44$

Critical Values: $t = \pm 2.0154$

Test Statistic:

$t = \frac{3.27 - 2.53}{1.2256 \sqrt{\frac{1}{21} + \frac{1}{25}}} = 2.040$

Reject H_0 at $\alpha = 0.05$

There is statistical evidence of a difference in means.
Calculating the Test Statistic

The test statistic is:

\[t = \frac{\bar{x}_1 - \bar{x}_2 - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(3.27 - 2.53) - 0}{1.2256 \sqrt{\frac{1}{21} + \frac{1}{25}}} = \frac{2.040}{1.2256} = 1.661 \]

The test statistic is:

\[s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{(21-1)1.30^2 + (25-1)1.16^2}{21 + 25 - 2}} = 1.2256 \]

Solution

\[H_0: \mu_1 - \mu_2 = 0 \quad \text{i.e.} \quad (\mu_1 = \mu_2) \]
\[H_A: \mu_1 - \mu_2 \neq 0 \quad \text{i.e.} \quad (\mu_1 \neq \mu_2) \]
\[\alpha = 0.05 \]
\[df = 21 + 25 - 2 = 44 \]
\[\text{Critical Values: } t = \pm 2.0154 \]
\[\text{Test Statistic: } \]
\[t = \frac{3.27 - 2.53}{1.2256 \sqrt{\frac{1}{21} + \frac{1}{25}}} = \frac{2.040}{1.2256} = 1.661 \]

Reject \(H_0 \) at \(\alpha = 0.05 \)

There is statistical evidence of a difference in means.
Is statistical significance enough to meet some journal publication requirements?

- Some journals say ‘YES’
- Some journals say ‘NO’
- Those journals that say ‘NO’ want extra information on practical significance of findings
 - One group of journals adopted the American Psychological Association (APA) policy.

APA Task force on statistical significance

- Members:
 - Robert Rosenthal, Robert Abelson, & Jacob Cohen
 - Leona Aiken, Mark Appelbaum, Gwyneth Boodoo, David A. Kenny, Helena Kramer, Donald Rubin, Bruce Thompson, Howard Wainer, & Leland Wilkinson.

- Senior Advisors:
 - Lee Cronbach, Paul Meehl, Frederick Mosteller, & John Tukey

- After 2 years of meetings came up with APA statements on effect sizes (practical significance)
APA statements

On Hypothesis Testing

- It is hard to imagine a situation in which a dichotomous accept-reject decision is better than reporting an actual *p*-value or, better still, a confidence interval.
- Never use the unfortunate expression “accept the null hypothesis.”
- Always provide some **effect-size** when reporting a *p*-value.
- Cohen (1994) has written on this subject in this journal. All psychologists would benefit from reading his insightful article.

APA statements

On Effect Sizes

- Always present **effect sizes** for primary outcomes.
- If the **units of measurement are meaningful** on a practical level (e.g., number of cigarettes smoked per day), then we usually prefer an **unstandardized measure** (regression coefficient or mean difference) to a standardized measure (*r* or *d*).
- It helps to add brief comments that place these effects sizes in a **practical and theoretical** context.

APA statements
On Effect Sizes

- APA’s (1994) publication manual included an important new “encouragement” (p.18) to report effect sizes.
- Unfortunately, empirical studies of various journals indicate that the effect size of this encouragement has been negligible (Keselman et al., 1998; Kirk, 1996; Thompson & Snyder, 1998).
- We must stress again that reporting and interpreting effect sizes in the context of previously reported effects is essential to good research.
- It enables readers to evaluate the stability results across samples, designs and analyses.
- Reporting effect sizes also informs power analyses and meta-analyses needed in future research.

APA statements
On Effect Sizes

- Fleiss (1994), Kirk (1996), Rosenthal (1994), and Snyder and Lawson (1993) have summarized various measures of effects sizes used in psychological research.
- Consult these articles for information on computing them.
- For a simple, general purpose display of the practical meaning of an effect size, see Rosenthal and Rubin (1982).
- Consult Rosenthal and Rubin (1994) for information on the use of “counternull intervals” for effect sizes, as alternatives to confidence intervals.

Marketing Research

“Statistical Power and effect size are not considered sufficiently by marketing researchers. The authors discuss how better attention to these two factors can improve the planning, execution, and reporting of marketing and consumer research. Suggestions are offered about how to increase effect size and improve statistical power.”

Source:

24 Applied Research Journals now requiring *effect size* reporting

- Educational and Psychological Measurement
- Educational Technology Research and Development
- *Journal of Educational Psychology* (APA)
- Journal of Educational and Psychological Consultation
- *Journal of Experimental Education*
- Measurement and Evaluation in Counseling and Development
- *The Professional Educator*
- *Reading and Writing*
- Contemporary Educational Psychology
- Research in the Schools
- Early Childhood Research Quarterly
- *Health Psychology* (APA)
- *Journal of Agricultural Education*
- *Journal of Applied Psychology*
- *Journal of Community Psychology*
- *Journal of Consulting & Clinical Psychology*
- J. of Counseling and Development (ACA)
- *Journal of Experimental Psychology: Applied*
- Journal of Learning Disabilities
- Language Learning
- Career Development Quarterly
- Exceptional Children
- *J. of Early Intervention*
- *J. of Personality Assessment*

Source: http://www.coe.tamu.edu/~bthompson/index.htm
What is practical significance?

Shows **how practically important** is the findings found in a study.

Illustration.
- Hubble telescope – NASA scientists in late 1980s thought that their Hubble telescope is calibrated within specifications. So, their telescope focus error was thought to be small.
- However, a small difference in calibration was **important** enough to hinder them from detecting new galaxies and making new discoveries.
- When they corrected this calibration error, new discoveries were easily made.

Practical significance index
- Jacob Cohen (1988, 1994) introduced some effect size indices to address practical significance
 - For mean differences (2 means)
 - similar to mean of Z scores with 0 as center
 - For mean differences (3 or more means, ANOVA setting)
 - For correlation/regression setting
 - r and $r^2 = \frac{SS_R}{SS_T}$
 - Related to statistical power

Effect sizes in research manuscripts: selecting, calculating, reporting, and interpreting
Ranges of importance for d

Mean differences (2 means) for psychological, educational, & behavioral constructs (in absolute values)

<table>
<thead>
<tr>
<th>0.2</th>
<th>small</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>medium</td>
</tr>
<tr>
<td>0.8</td>
<td>large</td>
</tr>
</tbody>
</table>

Is it easy to calculate these indices?

- Should be easy.
- Mean difference (2 means) effect size
 - Need to take this mean difference and divide by pooled standard deviation (or std dev of control group).
- Mean differences (3 or more means, ANOVA)
 - Need to take sum of squares between means and divide with sum of squares total (without group)
- Correlation & Regression analyses
 - Use r
 - r^2=% variation explained by regression.
Reconsider Example: Pooled s_p t Test

Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? A financial analyst for a brokerage firm collected the following data:

<table>
<thead>
<tr>
<th>Number</th>
<th>NYSE</th>
<th>NASDAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample mean</td>
<td>3.27</td>
<td>2.53</td>
</tr>
<tr>
<td>Sample std dev</td>
<td>1.30</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Assuming equal variances, is there a difference in average yield ($\alpha = 0.05$)?

Results were statistically significant. But, what is the size of the effect?

$H_0: \mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$H_A: \mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$\alpha = 0.05$

$df = 21 + 25 - 2 = 44$

Critical Values: $t = \pm 2.0154$

Test Statistic:

$$t = \frac{3.27 - 2.53}{\sqrt{\frac{1}{21} + \frac{1}{25}}} = 2.040$$

Reject H_0 at $\alpha = 0.05$

There is statistical evidence of a difference in means.

$d = (3.27 - 2.53)/1.2256 = 0.604$

Medium effect size
An Example of practical significance index in APA journal articles

 - Item Response Theory (IRT) Vertical Scaling Paper
 - Grades (K to 10) estimation of student ability mean and variances
 - Simulated abilities were done mimicking properties of the California Achievement Test (CAT) Norms
 - Simulation was done with SAS 8.0 at Riverside Publishing Company
 - with Normal ability vectors and Skewed ability distribution vectors (skewness as defined by the CAT ability distributions at different grades)
 - with Item parameter matrix following the difficulties on the CAT Norms
 - Rasch model
 - Estimation of item parameter and person ability parameter vectors can be achieved using two well-known IRT estimation techniques

An Example of practical significance index in APA journal articles Continued.

 - Item Response Theory (IRT) Vertical Scaling Paper
 - Rasch model
 - Estimation of item parameter and person ability parameter vectors can be achieved using two well-known IRT estimation techniques
 - Marginal Maximum Likelihood Estimation (MMLE)
 - Unconditional Maximum Likelihood Estimation (UCON) – utilizing person raw scores as sufficient statistics
 - No closed form solution exists for item and person ability parameters
 - Instead, numerical analyses and numerical integration algorithms are used to estimate these parameters
 - So, computer softwares are used to estimate these parameters
 - Results from WINSTEP (UnConditional MLE) and BILOG-MG (Marginal MLE) were compared
 - Usual simulation results were tabulated and presented in the paper
 - In addition, publication required effect sizes to show any practical importance of differences. Thus, these were also calculated in the paper.
Thank You

THANK YOU