Q:1 Solve the heat equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial u}{\partial t}, \quad 0<x<\pi, \quad t>0 \\
u(0, t) & =0, \quad u(\pi, t)=0, \quad t>0 \\
u(x, 0) & =100, \quad 0<x<\pi .
\end{aligned}
$$

Sol: Let $u(x, t)=X(x) T(t)$, then

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial u}{\partial t} \Longrightarrow X^{\prime \prime} T=X T^{\prime} \Longrightarrow \frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=-\lambda \Longrightarrow X^{\prime \prime}+\lambda X=0 \text { and } T^{\prime}+\lambda T=0 \\
u(0, t) & =0, \Longrightarrow X(0)=0 \text { and } u(\pi, t)=0 \Longrightarrow X(\pi)=0
\end{aligned}
$$

1. For $\lambda=0, X^{\prime \prime}+\lambda X=0$ has solution $X(x)=c_{1}+c_{2} x$.

Using $X(0)=0$ and $X(\pi)=0$ we get the trivial solution $X(x)=0$.
2. For $\lambda=-\alpha^{2}, X^{\prime \prime}+\lambda X=0$ has solution $X(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)$.

Using $X(0)=0$ we get $c_{1}=0$ and using $X(\pi)=0$ we get $c_{2} \sinh (\alpha \pi)=0$. Since $\sinh (\alpha \pi)=0$ only if $\alpha=0$. But $\alpha \neq 0$, therefore $c_{2}=0$ and we get a trivial solution $X(x)=0$.
3. For $\lambda=\alpha^{2}, X^{\prime \prime}+\lambda X=0$ has solution $X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$.

Using $X(0)=0$ we get $c_{1}=0$ and using $X(\pi)=0$ we get $c_{2} \sin (\alpha \pi)=0$. For nontrivial solution $c_{2} \neq 0$ and $\sin (\alpha \pi)=0 \Longrightarrow \alpha \pi=n \pi$ or $\alpha=n, n=1,2,3, \ldots$. The solutio is $X(x)=c_{2} \sin (n x), n=1,2,3, \ldots$.

For $\lambda=\alpha^{2}=n^{2}, T^{\prime}+n^{2} T=0$ has solution $T(t)=c_{3} e^{-n^{2} t}$.
The general solution is $u(x, t)=\sum_{i=1}^{\infty} A_{n} \sin (n x) e^{-n^{2} t}$.
$u(x, 0)=100 \Longrightarrow 100=\sum_{i=1}^{\infty} A_{n} \sin (n x)$ which is a half range Fourier sine series.
$A_{n}=\frac{2}{\pi} \int_{0}^{\pi} 100 \sin (n x) d x=\frac{-200}{n \pi}\left((-1)^{n}-1\right)=\frac{200}{n \pi}\left(1-(-1)^{n}\right)$
So $u(x, t)=\sum_{i=1}^{\infty} \frac{200}{n \pi}\left(1-(-1)^{n}\right) \sin (n x) e^{-n^{2} t}$

Q:2 Solve the wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<L, \quad t>0 \\
u(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
u(x, 0) & =0, \quad u_{t}(x, 0)=g(x), \quad 0<x<\mathrm{£} .
\end{aligned}
$$

Sol: Let $u(x, t)=X(x) T(t)$, then

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} u}{\partial t^{2}} \Longrightarrow X^{\prime \prime} T=X T^{\prime \prime} \Longrightarrow \frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{T}=-\lambda \Longrightarrow X^{\prime \prime}+\lambda X=0 \text { and } T^{\prime \prime}+\lambda T=0 \\
u(0, t) & =0, \Longrightarrow X(0)=0 \text { and } u(L, t)=0 \Longrightarrow X(L)=0
\end{aligned}
$$

1. For $\lambda=0, X^{\prime \prime}+\lambda X=0$ has solution $X(x)=c_{1}+c_{2} x$.

Using $X(0)=0$ and $X(L)=0$ we get the trivial solution $X(x)=0$.
2. For $\lambda=-\alpha^{2}, X^{\prime \prime}+\lambda X=0$ has solution $X(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x)$.

Using $X(0)=0$ we get $c_{1}=0$ and using $X(L)=0$ we get $c_{2} \sinh (\alpha L)=0$. Since $\sinh (\alpha L)=0$ only if $\alpha=0$. But $\alpha \neq 0$, therefore $c_{2}=0$ and we get a trivial solution $X(x)=0$.
3. For $\lambda=\alpha^{2}, X^{\prime \prime}+\lambda X=0$ has solution $X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$.

Using $X(0)=0$ we get $c_{1}=0$ and using $X(L)=0$ we get $c_{2} \sin (\alpha L)=0$. For nontrivial solution $c_{2} \neq 0$ and $\sin (\alpha L)=0 \Longrightarrow \alpha L=n \pi$ or $\alpha=\frac{n \pi}{L}, n=1,2,3, \ldots$ The solutio is $X(x)=c_{2} \sin \left(\frac{n \pi}{L} x\right), n=1,2,3, \ldots$.

For $\lambda=\alpha^{2}, T^{\prime \prime}+\alpha^{2} T=0$ has solution $T(t)=c_{3} \cos \left(\frac{n \pi}{L} t\right)+c_{4} \sin \left(\frac{n \pi}{L} t\right)$.
$u(x, 0)=0, \Longrightarrow T(0)=0 \Longrightarrow c_{3}=0$.
The general solution is $u(x, t)=\sum_{i=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{n \pi}{L} t\right)$.
Now $u_{t}(x, 0)=g(x) \Longrightarrow g(x)=\sum_{i=1}^{\infty} A_{n} \frac{n \pi}{L} \sin \left(\frac{n \pi}{L} x\right)$ which is a half range Fourier sine series
series, where $A_{n} \frac{n \pi}{L}=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x$ or $A_{n}=\frac{2}{n \pi} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x$.

