## Solution Math 301 Quiz 2

Q.1: Find the work done by the force $\mathbf{F}(x, y)=\left(2 x+e^{-y}\right) \mathbf{i}+\left(4 y-x e^{-y}\right) \mathbf{j}$ along the curve $y=x^{5}$ for $0 \leq x \leq 1$.

Sol: Let $P(x, y)=2 x+e^{-y}$ and $Q(x, y)=4 y-x e^{-y}$.

$$
\frac{\partial Q}{\partial x}=-e^{-y} \text { and } \frac{\partial P}{\partial y}=-e^{-y}, \text { therefore the integral } \int_{C} \mathbf{F} \cdot \mathbf{d r} \text { is independent of path. }
$$

Using the path $y=x$, we get

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}=\int_{0}^{1}\left(2 x+e^{-x}\right) d x+\left(4 x-x e^{-x}\right) d x=\int_{0}^{1}\left(6 x+e^{-x}-x e^{-x}\right) d x=e^{-1}+3
$$

Q.2: Use Green's theorenm to evaluate the integral $\oint_{C} x y d x+2 x^{2} d y$, where $C$ is the boundary of the region determined by the graphs of $x=0, x^{2}+y^{2}=2, x \geq 0$.

Sol: Let $P(x, y)=x y$ and $Q(x, y)=2 x^{2}$. Then using Green's theorem

$$
\oint_{C} x y d x+x^{2} d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{R} 3 x d A=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{2}} 3 r \cos \theta r d r d \theta=2 \sqrt{2}(2)=4 \sqrt{2} .
$$

Q.3: Find surface area of that portion of the plane $2 x+3 y+4 z=24$ that is bounded by the coordinate planes in the first octant.

Sol: $z=3-\frac{1}{2} x-\frac{3}{4} y$ and $\frac{\partial z}{\partial x}=-\frac{1}{2}, \frac{\partial z}{\partial y}=-\frac{3}{4}$ gives $d s=\sqrt{1+\frac{1}{4}+\frac{9}{16}}=\frac{\sqrt{29}}{4}$.

$$
\begin{aligned}
A(S) & =\iint_{S} d S=\iint_{R} \frac{\sqrt{29}}{4} d A=\frac{\sqrt{29}}{4} \text { (Area of the Projection onto } x y-\text { plane) } \\
& =\frac{\sqrt{29}}{4}\left(\frac{12.8}{2}\right)=12 \sqrt{29 .}
\end{aligned}
$$

