Q.1: Evaluate the integral $\int_{C} 2 x^{3} y d x+(3 x+y) d y$, where C is given by $x=y^{2}$ from $(1,-1)$ to $(1,1)$.

Sol: $\int_{C} 2 x^{3} y d x+(3 x+y) d y=\int_{-1}^{1} 2 y^{6} y 2 y d y+\left(3 y^{2}+y\right) d y=\int_{-1}^{1}\left(4 y^{8}+3 y^{2}+y\right) d y$

$$
\int_{-1}^{1}\left(4 y^{8}+3 y^{2}+y\right) d y=\left.\left(\frac{4 y^{9}}{9}+y^{3}+\frac{y^{2}}{2}\right)\right|_{-1} ^{1}=\frac{26}{9}
$$

Q.2: Use Green's theorem to evaluate the integral $\oint_{C}-3 x y d x+2 x y^{2} d y$, where C is the triangle $(1,3),(3,3),(3,9)$.

Sol: $P(x, y)=-3 x y, Q(x, y)=2 x y^{2}$ and $\frac{\partial Q}{\partial x}=2 y^{2}, \frac{\partial P}{\partial y}=-3 x$

$$
\oint_{C}-3 x y d x+2 x y^{2} d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\int_{1}^{3} \int_{3}^{3 x}\left(2 y^{2}+3 x\right) d y d x=366
$$

Q.3: Show that the integral $\int_{(1,2)}^{(3,6)}\left(2 y^{2} x-3\right) d x+\left(2 y x^{2}+4\right) d y$ is independent of path. Find the function $\phi(x, y)$ such that $d \phi=\left(2 y^{2} x-3\right) d x+\left(2 y x^{2}+4\right) d y$. Use $\phi(x, y)$ to evaluate the integral.

Sol: $P(x, y)=2 y^{2} x-3, Q(x, y)=2 y x^{2}+4$ and $\frac{\partial Q}{\partial x}=4 x y=\frac{\partial P}{\partial y}$. So the integral is independent of path. There exists a function $\phi(x, y)$ such that $d \phi(x, y)=P(x, y) d x+Q(x, y) d y$.

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=P=2 y^{2} x-3 \Rightarrow \phi(x, y)=x^{2} y^{2}-3 x+g(y) \\
& \frac{\partial \phi}{\partial y}=2 x^{2} y+g^{\prime}(y)=Q=2 x^{2} y+4 \Rightarrow g^{\prime}(y)=4 \Rightarrow g(y)=4 y . \text { So } \phi(x, y)=x^{2} y^{2}-3 x+4 y
\end{aligned}
$$

$$
\begin{aligned}
& \int_{(1,2)}^{(3,6)}\left(2 y^{2} x-3\right) d x+\left(2 y x^{2}+4\right) d y=\int_{(1,2)}^{(3,6)} d \phi(x, y) \\
& =\left.\phi(x, y)\right|_{(1,2)} ^{(3,6)}=\left(\left(3^{2}\right)\left(6^{2}\right)-3(3)+6(4)\right)-\left(\left(1^{2}\right)\left(2^{2}\right)-3(1)+4(2)\right)=330 .
\end{aligned}
$$

