## Solution Math 301-101 Sec: 02 \& 03 Quiz 1

Q.1: Find tangent vector and equation of tangent line to the curve $\overrightarrow{\mathbf{r}}(t)=3 \cos t \hat{\imath}+4 \sin t \hat{\jmath}$

Sol: Tangent vector $\overrightarrow{\mathbf{r}}^{\prime}(t)=-3 \sin t \hat{\imath}+4 \cos t \hat{\jmath}$
Tangent vector at $t=\frac{\pi}{3}$ is $\overrightarrow{\mathbf{r}}^{\prime}\left(\frac{\pi}{3}\right)=-3 \sin \left(\frac{\pi}{3}\right) \hat{\imath}+4 \cos \left(\frac{\pi}{3}\right) t \hat{\jmath}=-3 \frac{\sqrt{3}}{2} \hat{\imath}+\mathbf{2} \hat{\jmath}$
$\overrightarrow{\mathbf{r}}\left(\frac{\pi}{3}\right)=3 \cos \left(\frac{\pi}{3}\right) \hat{\imath}+4 \sin \left(\frac{\pi}{3}\right) \hat{\jmath}=\frac{3}{2} \hat{\imath}+2 \sqrt{3} \hat{\jmath}$
Equation of tengent line $\frac{x-\frac{3}{2}}{-3 \frac{\sqrt{3}}{2}}=\frac{y-2 \sqrt{3}}{2}=t \quad$ (symmetric form)
$x=-3 \frac{\sqrt{3}}{2} t+\frac{3}{2}$ and $y=2 t+2 \sqrt{3} \quad$ (parametric form)
Q.2: Find the directional derivative of $f(x, y)=4 x+x y^{2}-5 y$ at $(3,-1)$ in the direction of a vector with angle $\theta=\frac{\pi}{4}$.

Sol: $\nabla f(x, y)=\left(4+y^{2}\right) \hat{\imath}+(2 x y-y) \hat{\jmath}$ and $\nabla f(3,-1)=5 \hat{\imath}-11 \hat{\jmath}$
Direction vector is $\overrightarrow{\mathbf{u}}=\cos \left(\frac{\pi}{4}\right) \hat{\imath}+\sin \left(\frac{\pi}{4}\right) \hat{\jmath}=\frac{\sqrt{2}}{2} \hat{\imath}+\frac{\sqrt{2}}{2} \hat{\jmath}$

$$
D_{\overrightarrow{\mathbf{u}}} f(3,-1)=\nabla f(3,-1) \cdot \overrightarrow{\mathbf{u}}=5 \frac{\sqrt{2}}{2}-11 \frac{\sqrt{2}}{2}=-6 \frac{\sqrt{2}}{2}=-3 \sqrt{2} .
$$

Q.3: Find the curl and divergence of $\overrightarrow{\mathbf{F}}(x, y, z)=(x-y)^{3} \hat{\imath}+e^{-y z} \hat{\jmath}+x y e^{3 y} \hat{\mathbf{k}}$.

Sol: $\nabla \cdot \overrightarrow{\mathbf{F}}=\frac{\partial(x-y)^{3}}{\partial x}+\frac{\partial e^{-y z}}{\partial y}+\frac{\partial x y e^{3 y}}{\partial z}=3(x-y)^{2}-z e^{-y z}$

$$
\begin{aligned}
\nabla \times \overrightarrow{\mathbf{F}} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(x-y)^{3} & e^{-y z} & x y e^{3 y}
\end{array}\right| \\
& =\hat{\imath}\left(\frac{\partial\left(x y e^{3 y}\right)}{\partial y}-\frac{\partial\left(e^{-y z}\right)}{\partial z}\right)+\hat{\jmath}\left(\frac{\partial(x-y)^{3}}{\partial z}-\frac{\partial\left(x y e^{3 y}\right)}{\partial x}\right)+\hat{\mathbf{k}}\left(\frac{\partial\left(e^{-y z}\right)}{\partial x}-\frac{\partial(x-y)^{3}}{\partial y}\right) \\
& =\hat{\imath}\left(x e^{3 y}+3 x y e^{3 y}+y e^{-y z}\right)+\hat{\jmath}\left(-y e^{3 y}\right)+\hat{\mathbf{k}}\left(3(x-y)^{2}\right)
\end{aligned}
$$

