King Fahd University of Petroleum \& Minerals
 Department of Mathematics \& Statistics
 Math 301 Final Exam
 The First Semester of 2010-2011 (101)
 Time Allowed: 150 Minutes

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Q:1 (a) (5 points) Find Laplace transform $\mathcal{L}\{f(t)\}$ where

$$
f(t)=\left\{\begin{array}{llr}
0 & \text { if } & 0 \leq t<1 \\
t^{2} & \text { if } & t \geq 1
\end{array} .\right.
$$

(b) (5 points) Find inverse Laplace transform $\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}(s-1)}\right\}$.

Sol: (a) We can write $f(t)$ as $f(t)=t^{2} \mathcal{U}(t-1)$ and

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{2} \mathcal{U}(t-1)\right\}=e^{-s} \mathcal{L}\left\{(t+1)^{2}\right\}=e^{-s} \mathcal{L}\left\{t^{2}+2 t+1\right\}=e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right)
$$

(b) Partial fractions of $\frac{1}{s^{2}(s-1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-1}=\frac{-1}{s}+\frac{-1}{s^{2}}+\frac{1}{s-1}$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}(s-1)}\right\} & =\mathcal{L}^{-1}\left\{e^{-2 s}\left(\frac{-1}{s}+\frac{-1}{s^{2}}+\frac{1}{s-1}\right)\right\} \\
& =\left(-1-(t-2)+e^{t-2}\right) \mathcal{U}(t-2)
\end{aligned}
$$

Q:2 (12 points) Let $\vec{F}(x, y, z)=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{x^{2}+y^{2}+z^{2}}$ and D is the region bounded by the concentric spheres $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}+z^{2}=4$. Use divergence theorem to evaluate $\iint_{S}(\vec{F} \cdot \hat{n}) d S$.
Sol: $\vec{F}(x, y, z)=\frac{x \mathbf{i}}{x^{2}+y^{2}+z^{2}}+\frac{y \mathbf{i}}{x^{2}+y^{2}+z^{2}}+\frac{z \mathbf{i}}{x^{2}+y^{2}+z^{2}}$

$$
\begin{aligned}
& \operatorname{div} \vec{F}=\frac{x^{2}+y^{2}+z^{2}-2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}+\frac{x^{2}+y^{2}+z^{2}-2 y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}+\frac{x^{2}+y^{2}+z^{2}-2 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}=\frac{1}{x^{2}+y^{2}+z^{2}}=\frac{1}{\rho^{2}} \\
& \begin{array}{c}
\iint_{S}(\vec{F} \cdot \hat{n}) d S=\iiint_{D} \operatorname{div} \vec{F} d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{3} \frac{1}{\rho^{2}} \rho^{2} \sin (\phi) d \rho d \phi d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin (\phi) d \phi \int_{2}^{3} d \rho \\
=2 \pi(1+1)(3-2)=4 \pi
\end{array}
\end{aligned}
$$

Q:3 (16 points) Use separation of variables method to find the nontrivial solution of the heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad 0<x<1, \quad t>0
$$

subject to the boundary and initial conditions

$$
\begin{aligned}
u(0, t) & =0, \quad u(1, t)=0, \quad t>0 \\
u(x, 0) & =10, \quad 0<x<1
\end{aligned}
$$

Sol: Let $u(x, t)=X(x) T(t)$, then
$\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \Longrightarrow X^{\prime \prime} T=X T^{\prime} \Longrightarrow \frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=-\lambda \Longrightarrow X^{\prime \prime}+\lambda X=0$ and $T^{\prime}+\lambda T=0$
$u(0, t)=0, \Longrightarrow X(0)=0$ and $u(1, t)=0 \Longrightarrow X(1)=0$
For $\lambda=\alpha^{2}, X^{\prime \prime}+\lambda X=0$ has solution $X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$.
Using $X(0)=0$ we get $c_{1}=0$ and using $X(1)=0$ we get $c_{2} \sin (\alpha)=0$. For nontrivial
solution $c_{2} \neq 0$ and $\sin (\alpha)=0 \Longrightarrow \alpha=n \pi, n=1,2,3, \ldots$. The solution is
$X(x)=c_{2} \sin (n \pi x), n=1,2,3, \ldots$.
For $\lambda=\alpha^{2}=n^{2} \pi^{2}, T^{\prime}+\alpha^{2} T=0$ has solution $T(t)=c_{3} e^{-n^{2} \pi^{2} t}$.
The general solution is $u(x, t)=\sum_{i=1}^{\infty} A_{n} \sin (n \pi x) e^{-n^{2} \pi^{2} t}$.
$u(x, 0)=10 \Longrightarrow 10=\sum_{i=1}^{\infty} A_{n} \sin (n \pi x)$ which is a half range Fourier sine series.
$A_{n}=\frac{2}{1} \int_{0}^{1} 10 \sin (n \pi x) d x=\frac{-20}{n \pi}\left((-1)^{n}-1\right)=\frac{20}{n \pi}\left(1-(-1)^{n}\right)$
So $u(x, t)=\sum_{i=1}^{\infty} \frac{20}{n \pi}\left(1-(-1)^{n}\right) \sin (n \pi x) e^{-n^{2} \pi^{2} t}$

Q:4 (20 points) Use separation of variables method to find the nontrivial solution of the wave equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=\frac{\partial^{2} u}{\partial t^{2}}, 0<r<2, t>0
$$

subject to the boundary conditions

$$
\begin{aligned}
& u(2, t)=0, t>0 \\
& u(r, 0)=1,\left.\frac{\partial u}{\partial t}\right|_{t=0}=0, \quad 0<r<2
\end{aligned}
$$

solution is bounded at $r=0$.
Sol: Let $u(r, t)=R(r) T(t)$, then $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=\frac{\partial^{2} u}{\partial t^{2}} \Longrightarrow R^{\prime \prime} T+\frac{1}{r} R^{\prime} T=R T^{\prime \prime}$

Dividing by $R T$, we get $\frac{R^{\prime \prime}+\frac{1}{r} R^{\prime}}{R}=\frac{T^{\prime \prime}}{T}=-\lambda \Longrightarrow r R^{\prime \prime}+R^{\prime}+\lambda r R=0$ and $T^{\prime \prime}+\lambda T=0$

The equation $r R^{\prime \prime}+R^{\prime}+\lambda r R=0$ is a parametric Bessel equation with parameter $\lambda=\alpha^{2}$. Its general solution is given as $R(r)=c_{1} J_{0}(\alpha r)+Y_{0}(\alpha r)$

Since $Y_{0}(\alpha r) \rightarrow-\infty$ as $r \rightarrow 0^{+}$, therefore we choose $c_{2}=0$ to keep the solution bounded.

The boundary condition $u(2, t)=0 \Longrightarrow R(2)=0$ and $R(2)=0 \Longrightarrow c_{1} J_{0}(2 \alpha)=0$. For nontrivial solution we let $c_{1} \neq 0$ and therefore $J_{0}(2 \alpha)=0$.

Let $x_{n}=2 \alpha_{n}$ be the positive roots of $J_{0}(2 \alpha)=0, n=1,2,3, \ldots$ Then $R_{n}(r)=c_{1} J_{0}\left(\alpha_{n} r\right)$ are the solution for $n=1,2,3, \ldots$.

For $\lambda_{n}=\alpha_{n}^{2}$, the solutions of $T^{\prime \prime}+\lambda T=0$ are $T_{n}(t)=c_{3} \cos \left(\alpha_{n} t\right)+c_{4} \sin \left(\alpha_{n} t\right)$

The general solution of the original problem is

$$
u(r, t)=\sum_{i=1}^{\infty}\left[A_{n} \cos \left(\alpha_{n} t\right)+B_{n} \sin \left(\alpha_{n} t\right)\right] J_{0}\left(\alpha_{n} r\right)
$$

and $u_{t}(r, t)=\sum_{i=1}^{\infty}\left[-A_{n} \alpha_{n} \cos \left(\alpha_{n} t\right)+B_{n} \alpha_{n} \sin \left(\alpha_{n} t\right)\right] J_{0}\left(\alpha_{n} r\right)$
$u_{t}(r, 0)=0 \Longrightarrow B_{n}=0$ and $u(r, 0)=1 \Longrightarrow 1=\sum_{i=1}^{\infty} A_{n} J_{0}\left(\alpha_{n} 2\right)$, which is a FourierBessel series, where

$$
A_{n}=\frac{2}{4 J_{1}^{2}\left(2 \alpha_{n}\right)} \int_{0}^{2} r J_{0}\left(\alpha_{n} r\right) d r=\frac{1}{2 J_{1}^{2}\left(2 \alpha_{n}\right)} \frac{1}{\alpha_{n}^{2}} \int_{0}^{2 \alpha_{n}} \frac{d}{d t}\left[t J_{1}(t)\right]=\frac{1}{\alpha_{n} J_{1}\left(2 \alpha_{n}\right)} d t
$$

So $u(r, t)=\sum_{i=1}^{\infty} \frac{\cos \left(\alpha_{n} t\right)}{\alpha_{n} J_{1}\left(2 \alpha_{n}\right)} J_{0}\left(\alpha_{n} r\right)$.

Q:5 (20 points) Find the steady-state temperature $u(r, \theta)$ in a sphere of radius 2 by solving the problem

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta}=0, \quad 0<r<2, \quad 0<\theta<\pi,
$$

subject to the boundary condition

$$
u(2, \theta)=1+\cos (\theta), \quad 0<\theta<\pi .
$$

Sol: Let $u(r, \theta)=R(r) \Theta(\theta)$, then
$\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta}=0 \Longrightarrow R^{\prime \prime} \Theta+\frac{2}{r} R^{\prime} \Theta+\frac{1}{r^{2}} \Theta^{\prime \prime} R+\frac{\cot (\theta)}{r^{2}} \Theta^{\prime}=0$
Dividing by $R \Theta$, we get $\frac{r^{2} R^{\prime \prime}+2 r R^{\prime}}{R}=\frac{-\Theta^{\prime \prime}-\cot (\theta) \Theta^{\prime}}{\Theta}=\lambda$.

The equation $\Theta^{\prime \prime}+\cot (\theta) \Theta^{\prime}+\lambda \Theta=0 \Longrightarrow \sin (\theta) \Theta^{\prime \prime}+\cos (\theta) \Theta^{\prime}+\lambda \sin (\theta) \Theta=0$.

Letting $x=\cos (\theta), 0<\theta<\pi$, we get $\left(1-x^{2}\right) \frac{\partial^{2} \Theta}{\partial x^{2}}-2 x \frac{\partial \Theta}{\partial x}+\lambda \Theta=0$.

This is a Legendre equation with $\lambda=n(n+1), n=0,1,2, \ldots$

Its solutions are given by $\Theta(\theta)=P_{n}(\cos (\theta))$.

The other equation $r^{2} R^{\prime \prime}+2 r R^{\prime}-\lambda R=0$ is a Cauch-Euler equation. For $\lambda=n(n+1)$, the auxiliary equation is $m(m-1)+2 m-n(n+1)=0 \Longrightarrow m=n,-(n+1)$. The solutions

$$
R(r)=c_{1} r^{n}+c_{2} r^{-(n+1)}=c_{1} r^{n}+\frac{c_{2}}{r^{(n+1)}} \rightarrow \infty \text { as } r \rightarrow 0, \text { therefore we choose } c_{2}=0 .
$$

The general solution is $u(r, \theta)=\sum_{i=0}^{\infty} A_{n} r^{n} P_{n}(\cos (\theta))$.
$u(2, \theta)=1+\cos (\theta) \Longrightarrow 1+\cos (\theta)=\sum_{i=0}^{\infty} A_{n} 2^{n} P_{n}(\cos (\theta))$, a Fourier-Legendre series, where

$$
\begin{aligned}
A_{n}= & \frac{2 n+1}{2^{n+1}} \int_{0}^{\pi}(1+\cos (\theta)) P_{n}(\cos (\theta)) \sin (\theta) d \theta \\
& =\frac{2 n+1}{2^{n+1}} \int_{0}^{\pi} P_{n}(\cos (\theta)) \sin (\theta) d \theta+\frac{2 n+1}{2^{n+1}} \int_{0}^{\pi} \cos (\theta) P_{n}(\cos (\theta)) \sin (\theta) d \theta
\end{aligned}
$$

The first integral is equal to zero for all $n \neq 0$ and the second integral is zero for all $n \neq 1$.

$$
\begin{aligned}
& A_{0}=\frac{1}{2} \int_{0}^{\pi} P_{0}(\cos (\theta)) \sin (\theta) d \theta=\frac{1}{2} \int_{0}^{\pi} \sin (\theta) d \theta=1 \\
& A_{1}=\frac{3}{4} \int_{0}^{\pi} \cos (\theta) P_{1}(\cos (\theta)) \sin (\theta) d \theta=\frac{3}{4} \int_{0}^{\pi} \cos ^{2}(\theta) \sin (\theta) d \theta=\frac{1}{2} \\
& u(r, \theta)=1 P_{0}(\cos (\theta))+\frac{1}{2} r P_{1}(\cos (\theta))=1+\frac{1}{2} r \cos (\theta)
\end{aligned}
$$

Q:6 (15 points) Use Laplace transform to solve the problem

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<L, t>0
$$

subject to the boundary and initial conditions

$$
\begin{aligned}
u(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
u(x, 0) & =2 \sin \left(\frac{\pi x}{L}\right),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0, \quad 0<x<L
\end{aligned}
$$

Sol: Laplace transform of the given equation is

$$
\begin{aligned}
& \frac{d^{2} U}{d x^{2}}=s^{2} U-s u(x, 0)-u_{t}(x, 0)=s^{2} U-2 s \sin \left(\frac{\pi x}{L}\right) \\
& \Longrightarrow \frac{d^{2} U}{d x^{2}}-s^{2} U=-2 s \sin \left(\frac{\pi x}{L}\right) \\
& \Longrightarrow U_{c}(x, s)=c_{1} \cosh (s x)+c_{2} \sinh (s x)
\end{aligned}
$$

For U_{p}, let $U_{p}=A \sin \left(\frac{\pi x}{L}\right)+B \cos \left(\frac{\pi x}{L}\right)$, then $U_{p}^{\prime \prime}=-A \frac{\pi^{2}}{L^{2}} \sin \left(\frac{\pi x}{L}\right)-B \frac{\pi^{2}}{L^{2}} \cos \left(\frac{\pi x}{L}\right)$

$$
\Longrightarrow-A \frac{\pi^{2}}{L^{2}} \sin \left(\frac{\pi x}{L}\right)-B \frac{\pi^{2}}{L^{2}} \cos \left(\frac{\pi x}{L}\right)-A s^{2} \sin \left(\frac{\pi x}{L}\right)-B s^{2} \cos \left(\frac{\pi x}{L}\right)=-2 s \sin \left(\frac{\pi x}{L}\right)
$$

$$
\Longrightarrow A=\frac{2 s}{s^{2}+\frac{\pi^{2}}{L^{2}}} \text { and } B=0 \text {. So } U(x, s)=c_{1} \cosh (s x)+c_{2} \sinh (s x)+\frac{2 s}{s^{2}+\frac{\pi^{2}}{L^{2}}} \sin \left(\frac{\pi x}{L}\right)
$$

$$
u(0, t)=0 \Longrightarrow U(0, s)=0 \text { and } u(L, t)=0 \Longrightarrow U(L, s)=0
$$

$U(0, s)=0 \Longrightarrow c_{1}=0$ and $U(L, s)=0 \Longrightarrow c_{2} \sinh (s L)=0$. Since $\sinh (s L)=0$ only for $s L=0$. Since $s L \neq 0$, therefore $c_{2}=0$.

$$
U(x, s)=\frac{2 s}{s^{2}+\frac{\pi^{2}}{L^{2}}} \sin \left(\frac{\pi x}{L}\right) \Longrightarrow u(x, t)=2 \cos \left(\frac{\pi}{L} t\right) \sin \left(\frac{\pi}{L} x\right)
$$

Q:7 (15 points) Use appropriate Fourier transform to solve the problem

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad x>0, t>0
$$

subject to the conditions

$$
\begin{aligned}
u(0, t) & =5, t>0 \\
u(x, 0) & =0, \quad x>0
\end{aligned}
$$

Sol: Fourier transform of given equation is

$$
\begin{aligned}
& -\alpha^{2} U(\alpha, t)+\alpha u(0, t)=\frac{d U}{d t} \Longrightarrow \frac{d U}{d t}+\alpha^{2} U=5 \alpha . \\
& U_{c}=c_{1} e^{-\alpha^{2} t} \text {. Let } U_{p}=A \text {, then } U_{p}^{\prime}=0 \text { and } 0+\alpha^{2} A=5 \alpha \Longrightarrow A=\frac{5}{\alpha} \\
& \text { So } U(\alpha, t)=c_{1} e^{-\alpha^{2} t}+\frac{5}{\alpha} \\
& u(x, 0)=0 \Longrightarrow U(\alpha, 0)=0 \Longrightarrow 0=c_{1}+\frac{5}{\alpha} \Longrightarrow c_{1}=-\frac{5}{\alpha} \\
& U(\alpha, t)=\frac{5}{\alpha}\left[1-e^{-\alpha^{2} t}\right] \Longrightarrow u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{5}{\alpha}\left[1-e^{-\alpha^{2} t}\right] \sin (\alpha x) d \alpha
\end{aligned}
$$

