King Fahd University of Petroleum \& Minerals

Department of Mathematics \& Statistics
Math 301 Final Exam
The Summer Semester of 2009-2010 (093)

Q:1 (12 points) Write out the first four nonzero terms in the Fourier-Legendre expansion of

$$
f(x)=\left\{\begin{array}{rr}
0, & -1<x<0 \\
x, & 0<x<1
\end{array} .\right.
$$

Sol: The first 5 Legendre polynomials are $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=$ $\frac{1}{2}\left(5 x^{3}-3 x\right), P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$

The Fourier-Legendre expansion of $f(x)$ is $f(x)=\sum_{n=0}^{\infty} A_{n} P_{n}(x)$, where $A_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x$

$$
\begin{aligned}
& A_{0}=\frac{1}{2} \int_{-1}^{1} f(x) P_{0}(x) d x=\frac{1}{2} \int_{0}^{1} x d x=\frac{1}{4}, A_{1}=\frac{3}{2} \int_{-1}^{1} f(x) P_{1}(x) d x=\frac{3}{2} \int_{0}^{1} x^{2} d x=\frac{1}{2} \\
& A_{2}=\frac{5}{2} \int_{-1}^{1} f(x) P_{2}(x) d x=\frac{5}{4} \int_{0}^{1} x\left(3 x^{2}-1\right) d x=\frac{5}{16}, A_{3}=\frac{7}{2} \int_{-1}^{1} f(x) P_{3}(x) d x=\frac{7}{4} \int_{0}^{1} x\left(5 x^{3}-3 x\right) d x=
\end{aligned}
$$

0

$$
\begin{aligned}
& A_{4}=\frac{9}{2} \int_{-1}^{1} f(x) P_{4}(x) d x=\frac{9}{16} \int_{0}^{1} x\left(35 x^{4}-30 x^{2}+3\right) d x=-\frac{3}{32} \\
& f(x)=\frac{1}{4} P_{0}(x)+\frac{1}{2} P_{1}(x)+\frac{5}{16} P_{2}(x)-\frac{3}{32} P_{4}(x) .
\end{aligned}
$$

Q:2 (15 points) Find the nontrivial solution of the wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{a^{2}} \frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<1, \quad t>0
$$

subject to the boundary and initial conditions

$$
\begin{aligned}
u(0, t) & =0, \quad u(1, t)=0, \quad t>0 \\
u(x, 0) & =\frac{\pi}{2} \sin (3 \pi x),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0, \quad 0<x<1
\end{aligned}
$$

Sol: Let $u(x, t)=X(x) T(t)$, then $\frac{\partial^{2} u}{\partial x^{2}}=X^{\prime \prime}(x) T(t)$ and $\frac{\partial^{2} u}{\partial t^{2}}=X(x) T^{\prime \prime}(t)$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{a^{2}} \frac{\partial^{2} u}{\partial t^{2}} \Rightarrow X^{\prime \prime}(x) T(t)=\frac{1}{a^{2}} X(x) T^{\prime \prime}(t) \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{a^{2} T(t)}=-\lambda \\
& \Rightarrow X^{\prime \prime}(x)+\lambda X(x)=0 \text { and } T^{\prime \prime}(t)+a^{2} \lambda T(t)=0
\end{aligned}
$$

Let $\lambda=\alpha^{2}, \alpha>0$. Then $X^{\prime \prime}(x)+\lambda X(x)=0 \Rightarrow X(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)$
$u(0, t)=0 \Rightarrow c_{1}=0$ and $u(1, t)=0 \Rightarrow c_{2} \sin (\alpha)=0 \Rightarrow \alpha=n \pi$ and $c_{2} \neq 0$
$X_{n}(x)=c_{2} \sin (n \pi x)$.
Now $T^{\prime \prime}(t)+a^{2} \lambda T(t)=0 \Rightarrow T(t)=c_{3} \cos (a n \pi t)+c_{4} \sin (a n \pi t)$ and $T^{\prime}(t)=-c_{3} a n \pi \sin (a n \pi t)+$ $c_{4} n \pi \cos (a n \pi t)$

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial t}\right|_{t=0}=0 \Rightarrow T^{\prime}(0)=0 \Rightarrow c_{4}=0 \\
& u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x) \cos (a n \pi t) \\
& u(x, 0)=\frac{\pi}{2} \sin (3 \pi x) \Rightarrow \frac{\pi}{2} \sin (3 \pi x)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x) \\
& \Rightarrow A_{n}=\frac{2}{1} \int_{0}^{1} \frac{\pi}{2} \sin (3 \pi x) \sin (n \pi x)=0 \text { for } n \neq 3 \text { because }\{\sin (n \pi x)\}_{n=1}^{\infty} \text { are orthogonal }
\end{aligned}
$$ functions.

For $n=3, A_{n}=\pi \int_{0}^{1} \sin (3 \pi x) \sin (3 \pi x)=\frac{1}{2} \pi$
$u(x, t)=\frac{\pi}{2} \sin (3 \pi x) \cos (3 a \pi t)$.
Q:3 (15 points) Solve the boundary value proble

$$
a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)=\frac{\partial^{2} u}{\partial t^{2}}, 0<r<c, t>0
$$

subject to the boundary conditions

$$
\begin{aligned}
u(c, t) & =0, t>0 \\
u(r, 0) & =0,\left.\frac{\partial u}{\partial t}\right|_{t=0}=1, \quad 0<r<c
\end{aligned}
$$

solution is bounded at $r=0$.

Sol: Let $u(r, t)=R(r) T(t)$, then $\frac{\partial^{2} u}{\partial r^{2}}=R^{\prime \prime}(r) T(t), \frac{\partial u}{\partial r}=R^{\prime}(r) T(t)$, and $\frac{\partial^{2} u}{\partial t^{2}}=$ $R(r) T^{\prime \prime}(t)$

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=\frac{1}{a^{2}} \frac{\partial^{2} u}{\partial t^{2}} \Rightarrow R^{\prime \prime}(r) T(t)+\frac{1}{r} R^{\prime}(r) T(t)=\frac{1}{a^{2}} R(r) T^{\prime \prime}(t)
$$

$$
\frac{R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)}{R(r)}=\frac{T^{\prime \prime}(t)}{a^{2} T(t)}=-\lambda \Rightarrow R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)+\lambda R(r)=0 \text { and } T^{\prime \prime}(t)+a^{2} \lambda T(t)=0
$$

$R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)+\lambda R(r)=0 \Rightarrow r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+\lambda r^{2}=0$ is a Bessel equation with $\nu=0$.

For $\lambda=\alpha^{2}$, the general solution of this equation is $R(r)=c_{1} J_{0}(\alpha r)+c_{2} Y_{0}(\alpha r)$
Since $Y_{0}(\alpha r) \rightarrow-\infty$ as $r \rightarrow 0^{+}$, therefore we choose $c_{2}=0$
$u(c, t)=0 \Rightarrow c_{1} J_{0}(\alpha c)=0$. For nontrivial solution $c_{2} \neq 0$ and $J_{0}(\alpha c)=0$

Let $x_{i}=\alpha_{i} c$ are non negative solutions of $J_{0}(\alpha c)=0$.
Then $\lambda_{i}=\alpha_{i}^{2}=\frac{x_{i}^{2}}{c^{2}}$ are the eigenvalues. $\lambda=0$ is not an eigenvalues.
Now $T^{\prime \prime}(t)+a^{2} \alpha^{2} T(t)=0 \Rightarrow T(t)=c_{3} \cos (a \alpha t)+c_{4} \sin (a \alpha t)$
$u(r, 0)=0 \Rightarrow T(0)=0 \Rightarrow c_{3}=0$.
The general solution is $u(r, t)=\sum_{i=1}^{\infty} A_{i} \sin \left(a \alpha_{i} t\right) J_{0}\left(\alpha_{i} r\right)$ and $\frac{\partial u}{\partial t}=\sum_{i=1}^{\infty} a \alpha_{i} A_{i} \cos \left(a \alpha_{i} t\right) J_{0}\left(\alpha_{i} r\right)$ $\left.\frac{\partial u}{\partial t}\right|_{t=0}=1 \Rightarrow 1=\sum_{i=1}^{\infty} a \alpha_{i} A_{i} J_{0}\left(\alpha_{i} r\right)$,
where $A_{i}=\frac{2}{a \alpha_{i} c^{2} J_{1}^{2}\left(\alpha_{i} c\right)} \int_{0}^{c} r J_{0}\left(\alpha_{i} r\right) d r=\frac{2}{a \alpha_{i} c^{2} J_{1}^{2}\left(\alpha_{i} c\right) \alpha_{i}^{2}} \int_{0}^{\alpha_{i} c} t J_{0}(t) d t$ using $\alpha_{i} r=t$

$$
=\frac{2}{a \alpha_{i} c^{2} J_{1}^{2}\left(\alpha_{i} c\right) \alpha_{i}^{2}} \int_{0}^{\alpha_{i} c} \frac{d}{d t}\left[t J_{1}(t)\right] d t \quad u \operatorname{sing} \frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x) \text { for } n=1
$$

$$
=\left.\frac{2}{a \alpha_{i} c^{2} J_{1}^{2}\left(\alpha_{i} c\right) \alpha_{i}^{2}}\left[t J_{1}(t)\right]\right|_{0} ^{\alpha_{i} c}=\frac{2}{a \alpha_{i} c^{2} J_{1}^{2}\left(\alpha_{i} c\right) \alpha_{i}^{2}}\left[\alpha_{i} c J_{1}\left(\alpha_{i} c\right)\right]
$$

$$
=\frac{2}{a c J_{1}\left(\alpha_{i} c\right) \alpha_{i}^{2}}
$$

$$
u(r, t)=\sum_{i=1}^{\infty} \frac{2}{a c J_{1}\left(\alpha_{i} c\right) \alpha_{i}^{2}} \sin \left(a \alpha_{i} t\right) J_{0}\left(\alpha_{i} r\right)
$$

Q:4 (8 points) Solution of the problem

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta}=0, \quad 0<r<c, \quad 0<\theta<\pi
$$

is given by

$$
u(r, \theta)=\sum_{n=0}^{\infty} A_{n} r^{n} P_{n}(\cos \theta)
$$

Find value(s) of A_{n} if $u(c, \theta)=\cos \theta$. (Hint: $\left.P_{1}(\cos \theta)=\cos \theta\right)$.

Sol: $u(c, \theta)=\cos \theta \Rightarrow \cos \theta=\sum_{n=0}^{\infty} A_{n} c^{n} P_{n}(\cos \theta)$,
where $A_{n} c^{n}=\frac{2 n+1}{2} \int_{0}^{\pi} \cos \theta P_{n}(\cos \theta) \sin \theta d d=\frac{2 n+1}{2} \int_{0}^{\pi} P_{1}(\cos \theta) P_{n}(\cos \theta) \sin \theta d \theta=0$ for $n \neq 1$ since $\not P_{n}(x)$ are orthogonal

For $n=1, A_{1} c=\frac{3}{2} \int_{0}^{\pi} P_{1}(\cos \theta) P_{1}(\cos \theta) \sin \theta d \theta=\frac{3}{2} \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta=1 \Rightarrow A_{1}=\frac{1}{c}$ $u(r, \theta)=\frac{1}{c} r \cos \theta$.

Q:5 (5 points) If for $x=\cos \theta, P_{0}(\cos \theta)=1, P_{1}(\cos \theta)=\cos \theta$. Show that

$$
P_{2}(\cos \theta)=\frac{1}{4}(3 \cos 2 \theta+1) .
$$

Sol: $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

$$
\Rightarrow P_{2}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)=\frac{1}{2}\left(3 \frac{1+\cos 2 \theta}{2}-1\right)=\frac{1}{2}\left(\frac{3}{2}+\frac{3 \cos 2 \theta}{2}-1\right)=\frac{1}{4}(3 \cos 2 \theta+1) .
$$

Q:6 (15 points) Use Laplace transform to solve the problem

$$
\frac{\partial^{2} u}{\partial x^{2}}+\sin \pi x \sin \omega t=\frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<1, t>0
$$

subject to the boundary and initial conditions

$$
\begin{aligned}
& u(0, t)=0, \quad u(1, t)=0, \quad t>0 \\
& u(x, 0)=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0, \quad 0<x<1
\end{aligned}
$$

Sol: Taking Laplace transform of $\frac{\partial^{2} u}{\partial x^{2}}+\sin \pi x \sin \omega t=\frac{\partial^{2} u}{\partial t^{2}}$ we get

$$
\begin{aligned}
& \frac{d^{2} U(x, s)}{d x^{2}}+\sin \pi x \frac{\omega}{s^{2}+\omega^{2}}=s^{2} U(x, s)-s u(x, 0)-u_{t}(x, 0) \\
& \frac{d^{2} U}{d x^{2}}-s^{2} U=\sin \pi x \frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
$$

The complementary function is $U_{c}(x, s)=c_{1} \cosh (s x)+c_{2} \sinh (s x)$
$u(0, t)=0 \Rightarrow U(0, s)=0 \Rightarrow c_{1}=0$
$u(1, t)=0 \Rightarrow U(1, s)=0 \Rightarrow c_{2} \sinh (s)=0 \Rightarrow c_{2}=0$
Let $U_{p}=A \cos \pi x+B \sin \pi x$, then $\frac{d^{2} U_{p}}{d x^{2}}=-\pi^{2} A \cos \pi x-\pi^{2} B \sin \pi x$

$$
\frac{d^{2} U}{d x^{2}}-s^{2} U=\sin \pi x \frac{\omega}{s^{2}+\omega^{2}} \Rightarrow-\pi^{2} A \cos \pi x-\pi^{2} B \sin \pi x-s^{2} A \cos \pi x-s^{2} B \sin \pi x=
$$

