King Fahd University of Petroleum \& Minerals
 Department of Mathematics \& Statistics
 Math 301 Major Exam I
 The Summer Semester of 2009-2010 (093)

Q:1 (a) (7 points) Find the directional derivative of $f(x, y, z)=x y^{2}-4 x^{2} y+z^{2}$ at $(1,-1,2)$ in the direction of $3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}$.
(b) (5 points) Write the direction of maximum directional derivative and value of maximum directional derivative.

Sol. (a) $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\left\langle y^{2}-8 x y, 2 x y-4 x^{2}, 2 z\right\rangle$

$$
\begin{aligned}
& \vec{u}=\langle 3,6,2\rangle,|\vec{u}|=\sqrt{9+36+4}=7, \hat{u}=\left\langle\frac{3}{7}, \frac{6}{7}, \frac{2}{7}\right\rangle \\
& D_{\hat{u}} f(1,-1,2)=\nabla f(1,-1,2) \cdot \hat{u}=\frac{3}{7}(1+8)+\frac{6}{7}(-2-4)+\frac{2}{7}(4)=-\frac{1}{7}
\end{aligned}
$$

(b) $\nabla f(1,-1,2)=\langle 9,-6,4\rangle$ is the direction of maximum directional derivative and value of maximum directional derivative is $\|\nabla f(1,-1,2)\|=\sqrt{81+36+16}=\sqrt{133}$.

Q:2 Let $\vec{F}(x, y, z)=x y e^{z} \mathbf{i}+y z e^{x} \mathbf{j}+x z e^{y} \mathbf{k}$.
(a) (5 points) Find $\nabla \cdot \vec{F}$.
(b) (5 points) Find $\nabla \times \vec{F}$.
(c) (4 points) Find $\nabla \cdot(\nabla \times \vec{F})$.

Sol. (a) $\nabla \cdot \vec{F}=\frac{\partial x y e^{z}}{\partial x}+\frac{\partial y z e^{x}}{\partial y}+\frac{\partial x z e^{y}}{\partial z}=x e^{y}+z e^{x}+y e^{z}$.
(b) $\nabla \times \vec{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x y e^{z} & y z e^{x} & x z e^{y}\end{array}\right|$
$=\mathbf{i}\left(\frac{\partial x z e^{y}}{\partial y}-\frac{\partial y z e^{x}}{\partial z}\right)+\mathbf{j}\left(\frac{\partial x y e^{z}}{\partial z}-\frac{\partial x z e^{y}}{\partial x}\right)+\mathbf{k}\left(\frac{\partial y z e^{x}}{\partial x}-\frac{\partial x y e^{z}}{\partial y}\right)$ $=\mathbf{i}\left(x z e^{y}-y e^{x}\right)+\mathbf{j}\left(x y e^{z}-z e^{y}\right)+\mathbf{k}\left(y z e^{x}-x e^{z}\right)$
(c) $\nabla \cdot(\nabla \times \vec{F})=\frac{\partial\left(x z e^{y}-y e^{x}\right)}{\partial x}+\frac{\partial\left(x y e^{z}-z e^{y}\right)}{\partial y}+\frac{\partial\left(y z e^{x}-x e^{z}\right)}{\partial z}=0$.

Q:3 (10 points) Determine whether the integral $\int_{(1,2)}^{(3,6)}\left(3 y^{2} x^{2}+5\right) d x+\left(2 x^{3} y-4\right) d y$ is independent of path. If so, use a convenient path between the points and evaluate the integral.

Sol. Let $P(x, y)=3 y^{2} x^{2}+5, Q(x, y)=2 x^{3} y-4$. Then $\frac{\partial Q}{\partial x}=6 x^{2} y=\frac{\partial P}{\partial y}$. So the integral is independent of path.

Consider the stariaght line path between two points $(1,2)$ and $(3,6)$ which is $y=2 x$.

$$
\begin{aligned}
& \int_{(1,2)}^{(3,6)}\left(3 y^{2} x^{2}+5\right) d x+\left(2 x^{3} y-4\right) d y=\int_{1}^{3}\left(12 x^{4}+5\right) d x+\left(4 x^{4}-4\right) 2 d x \\
& =\int_{1}^{3}\left(20 x^{4}-3\right) d x=962 .
\end{aligned}
$$

Q:4 (12 points) Use Green's Theorem to evaluate the integral $\oint_{C}\left(3 x+2 y^{2}\right) d x+\left(3 x^{2}-2 y\right) d y$, where C is the boundary of the region determined by the graphs of $y=x^{2}$ and $y=1$.

Sol. $\oint_{C}\left(3 x+2 y^{2}\right) d x+\left(3 x^{2}-2 y\right) d y=\iint_{R}(6 x-4 y) d A=\int_{-1}^{1} \int_{x^{2}}^{1}(6 x-4 y) d y d x=-\frac{16}{5}$.

Q:5 (12 points) Find the surface area of the portions of the sphere $x^{2}+y^{2}+z^{2}=16$ that are within the cylinder $x^{2}+y^{2}=4 y$.

Sol. $z=\sqrt{16-x^{2}-y^{2}}, \frac{\partial z}{\partial x}=\frac{-x}{\sqrt{16-x^{2}-y^{2}}}, \frac{\partial z}{\partial y}=\frac{-y}{\sqrt{16-x^{2}-y^{2}}}$

$$
d s=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A=\sqrt{1+\frac{x^{2}}{16-x^{2}-y^{2}}+\frac{y^{2}}{16-x^{2}-y^{2}}} d A=\frac{4}{\sqrt{16-x^{2}-y^{2}}} d A
$$

Area of upper side is

$$
\begin{aligned}
A_{1}(S) & =\iint_{R} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A=\iint_{R} \frac{4}{\sqrt{16-x^{2}-y^{2}}} d A \\
& =\int_{0}^{\pi} \int_{0}^{4 \sin \theta} 4\left(16-r^{2}\right)^{-\frac{1}{2}} r d r d \theta=\int_{0}^{\pi}(16-4 \sqrt{8 \cos 2 \theta+8}) d \theta=16 \pi-32
\end{aligned}
$$

Total Area $=2 A_{1}(S)=32(\pi-2)$.

Q:6 (15 points) Let $\vec{F}(x, y, z)=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$. Use Stokes' theorem to evaluate the integral $\oint_{C} F \cdot d r$, where C is the counter clockwise boundary of the surface that is bounded by the plane $2 x+y+2 z=6$ and the coordinate planes in the first octant.

Sol. $\nabla \times \vec{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z & x & y\end{array}\right|=\mathbf{i}+\mathbf{j}+\mathbf{k}$

$$
\begin{aligned}
& \text { Let } g(x, y, z)=2 x+y+2 z-6=0 \text {, then } \nabla g=\langle 2,1,2\rangle \text { and } \hat{n}=\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle \\
& \begin{aligned}
&(\nabla \times \vec{F}) \cdot \hat{n}=\frac{2}{3}+\frac{1}{3}+\frac{2}{3}=\frac{5}{3} \\
& \oint_{C} F \cdot d r=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S=\iint_{R} \frac{5}{3} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A, \text { where } z=3-x-\frac{1}{2} y \\
&=\iint_{R} \frac{5}{3} \frac{3}{2} d A=\frac{5}{2} \text { (area of triangle bounded by lines } x=0, y=0 \text { and } 2 x+y=6 \text {) } \\
& \quad=\frac{5}{2}\left(\frac{6 \times 3}{2}\right)=\frac{45}{2} .
\end{aligned}
\end{aligned}
$$

Q:7 (15 points) Let $\vec{F}(x, y, z)=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ and D is the region bounded by the sphere $x^{2}+y^{2}+z^{2}=9$. Use divergence theorem to evaluate $\iint_{S}(F \cdot n) d s$.

Sol. $\nabla \cdot \vec{F}=\frac{\partial\left(x^{3}\right)}{\partial x}+\frac{\partial\left(y^{3}\right)}{\partial y}+\frac{\partial\left(z^{3}\right)}{\partial z}=3\left(x^{2}+y^{2}+z^{2}\right)$.

$$
\begin{aligned}
\iint_{S}(F \cdot n) d s & =\iiint_{D} \nabla \cdot \vec{F} d V=\iiint_{D} 3\left(x^{2}+y^{2}+z^{2}\right) d V \\
& =3 \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{3} \rho^{2} \rho^{2} \sin \phi d \rho d \theta d \phi=\frac{2916}{5} \pi
\end{aligned}
$$

Q:8 (a) (5 points) Find Laplace Transform for $f(t)=\cos (k t)$.
(b) (5 points) Find Laplace Transform for $g(t)=\cos ^{2}(t)$.

Sol. (a) $\mathcal{L}\{\cos k t\}=\int_{0}^{\infty} \cos k t e^{-s t} d t=\left.\frac{\sin k t}{k} e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{\sin k t}{k}(-s) e^{-s t} d t$

$$
=\frac{s}{k}\left[\left.\frac{-\cos k t}{k} e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{-\cos k t}{k}(-s) e^{-s t} d t\right]
$$

$$
=\frac{s}{k}\left(0+\frac{1}{k}\right)-\frac{s^{2}}{k^{2}} \mathcal{L}\{\cos k t\}
$$

$\Rightarrow\left(\frac{s^{2}+k^{2}}{k^{2}}\right) \mathcal{L}\{\cos k t\}=\frac{s}{k^{2}} \Rightarrow \mathcal{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$.
(b) $\mathcal{L}\left\{\cos ^{2} t\right\}=\mathcal{L}\left(\frac{1}{2}+\frac{\cos 2 t}{2}\right)=\mathcal{L}\left\{\frac{1}{2}\right\}+\frac{1}{2} \mathcal{L}\{\cos 2 t\}=\frac{1}{2 s}+\frac{1}{2} \frac{s}{s^{2}+k^{2}}$.

