Q.1: Solve the initial value problem $(x+2) \frac{d y}{d x}+y=2 \ln (x), y(1)=1$.

Sol. We can write the given equation as $\frac{d}{d x}[(x+2) y]=2 \ln (x)$
Which $\Rightarrow(x+2) y=2 \int \ln (x) d x+c, \Rightarrow(x+1) y=2 x \ln (x)-2 x+c$ or $y=\frac{2 x \ln (x)-2 x+c}{x+2}$ $y(1)=1 \Rightarrow 1=\frac{0-21+c}{3} \Rightarrow c=5$ and the solution is $y=\frac{2 x \ln (x)-2 x+5}{x+2}$.
Q.2: Solve the differential equation $6 x y d x+\left(4 y+9 x^{2}\right) d y=0$ by making it exact.

Sol. $M(x, y)=6 x y$ and $N(x, y)=4 y+9 x^{2} . \frac{\partial M}{\partial y}=6 x$ and $\frac{\partial N}{\partial x}=18 x$. So the equation is not exact.

$$
\frac{N_{x}-M_{y}}{M}=\frac{18 x-6 x}{6 x y}=\frac{2}{y} \text { is a function of } y \text { alone. }
$$

$\mu(x)=e^{\int \frac{2}{y} d y}=e^{2 \ln y}=y^{2}$ is the integrating factor.
Multiplying by integration factor, we get $6 x y^{3} d x+\left(4 y^{3}+9 x^{2} y^{2}\right) d y=0$
$\bar{M}(x, y)=6 x y^{3}$ and $\bar{N}(x, y)=4 y^{3}+9 x^{2} y^{2} . \frac{\partial \bar{M}}{\partial y}=184 x y^{2}$ and $\frac{\partial \bar{N}}{\partial x}=18 x y^{2}$. So the equation is exact.

There exists a function $f(x, y)$ such that $\frac{\partial f}{\partial x}=\bar{M}$ and $\frac{\partial f}{\partial y}=\bar{N}$

$$
\frac{\partial f}{\partial x}=\bar{M}=6 x y^{3}, \Rightarrow f(x, y)=3 x^{2} y^{3}+g(y)
$$

$\frac{\partial f}{\partial y}=9 x^{2} y^{2}+g^{\prime}(y)=\bar{N}=4 y^{3}+9 x^{2} y^{2} \Rightarrow g^{\prime}(y)=4 y^{3} \Rightarrow g(y)=y^{4}$
So $f(x, y)=3 x^{2} y^{3}+y^{4}+c$
Q.3: (a.) Use appropriate substitution to transform $\left(y^{2}+x y\right) d x+x^{2} d y=0$ into a separable equation. Do not solve the new equation.

Sol. Given equation is a homogeneous equation of degree 2. Let $y=u x$, then $d y=u d x+x d u$

$$
\begin{aligned}
& \left(y^{2}+x y\right) d x+x^{2} d y=0 \Rightarrow\left(u^{2} x^{2}+u x^{2}\right) d x+\left(x^{2}\right)(u d x+x d u)=0 \\
& u^{2} x^{2} d x+u x^{2} d x+x^{2} u d x+x^{3} d u=0 \Rightarrow x^{2}\left(u^{2}+2 u\right) d x+x^{3} d u=0 \\
& \Rightarrow x^{2}\left(u^{2}+2 u\right) d x=-x^{3} d u \Rightarrow \frac{1}{x} d x=\frac{-1}{u^{2}+2 u} d u
\end{aligned}
$$

Which is a separable equation.
(b.) Use appropriate substitution to transform $\frac{d y}{d x}-y=e^{x} y^{2}$ into a linear equation. Do not solve the new equation.
Sol. $\frac{d y}{d x}-y=e^{x} y^{2}$ is a Bernoulli equation with $n=2$.
Let $u=y^{1-2}=y^{-1}$ or $y=u^{-1}$ and $\frac{d y}{d x}=-u^{-2} \frac{d u}{d x}$
So $\frac{d y}{d x}-y=e^{x} y^{2} \Rightarrow-u^{-2} \frac{d u}{d x}-u^{-1}=e^{x} u^{-2}$
Multiplying by $-u^{2}$ we get $\frac{d u}{d x}+u=-e^{x}$ which is a linear equation.

