Q.1: Solve the initial value problem $y^{2} d x-2\left(x y+y^{4}\right) d y=0, y(1)=1$. (Hint: check if it is linear in x or in y)

Sol: The equation is linear in $\mathrm{x}, \frac{d x}{d y}-2 \frac{x}{y}=2 y^{2}$
$\mathrm{IF}=e^{\int \frac{-2}{y} d y}=e^{-2 \ln y}=y^{-2}=\frac{1}{y^{2}}$
$\frac{1}{y^{2}} \frac{d x}{d y}-2 \frac{x}{y^{3}}=2 \Rightarrow \frac{d}{d y}\left[x \frac{1}{y^{2}}\right]=2 \Rightarrow x \frac{1}{y^{2}}=2 y+c \Rightarrow x=2 y^{3}+c y^{2}$
$y(1)=1 \Rightarrow 1=2+c \Rightarrow c=-1$
The solution is $x=2 y^{3}-y^{2}$
Q.2: Solve the differential equation $\frac{d y}{d x}+\frac{\sin ^{2} y}{\sec ^{2} x}=0$.

Sol: $\frac{1}{\sin ^{2} y} d y=-\cos ^{2} x d x$
$\csc ^{2} y d y=-\left(\frac{1+\cos 2 x}{2}\right) d x$
$-\cot y=-\left(\frac{x}{2}+\frac{\sin 2 x}{4}+c\right) \Rightarrow 4 \cot y=(2 x+\sin 2 x+c)$
Q.3: Solve the differential equation $\left(3 x^{2}+2 y^{2}\right) d x+(2 x y) d y=0$

Sol: $M(x, y)=3 x^{2}+2 y^{2}$ and $N(x, y)=2 x y$
$M_{y}=4 y$ and $N_{x}=2 y$, the equation is not exact.
$\frac{M_{y}-N_{x}}{N}=\frac{4 y-2 y}{2 x y}=\frac{2 y}{2 x y}=\frac{1}{x}$ is function of x alone $\mu(x)=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$

Multiplying given equation by $\mu(x)=x$, we get $\left(3 x^{3}+2 x y^{2}\right) d x+\left(2 x^{2} y\right) d y=0$
$\bar{M}(x, y)=3 x^{3}+2 x y^{2}$ and $\bar{N}(x, y)=2 x^{2} y$
$\bar{M}_{y}=4 x y$ and $\bar{N}_{x}=2 x y$. Now the equation is exact.
There exists a function $f(x, y)$ such that
$\frac{\partial f}{\partial y}=\bar{N}(x, y)=2 x^{2} y \Rightarrow f(x, y)=x^{2} y^{2}+g(x)$ and $\frac{\partial f}{\partial x}=2 x y^{2}+g^{\prime}(x)=\bar{M}(x, y)=3 x^{3}+2 x y^{2} \Rightarrow g^{\prime}(x)=3 x^{3} \Rightarrow g(x)=\frac{3}{4} x^{4}+c$ $f(x, y)=x^{2} y^{2}+\frac{3}{4} x^{4}=c$ is the solution.

